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Automated 
reasoning tools

Property P Neural Net N

Is the always the case that N 
satisfies Property P? 

Robustness Trojan Attack Fairness 

Automated Reasoning: aims to enable systems to identify the 
valid reasoning.

3

How often N satisfies P? Why N doesn’t satisfy P?



S(I,O)

SatisfiesSystem Properties

P(I,O)

Is the always the case that S 
satisfies Property P? 

How often S satisfies P? Why S doesn’t satisfy P?

To answer these questions: SAT solvers, SMT solvers 



Suduku Graph Coloring Neural Networks

Course Outline

• How does SAT solver works? What makes them fast? 

• Basic of proportional logic, and constraints encoding 

• Applications: will discuss research papers on explainable and verifiable AI,  

neuro-symbolic AI, verification and synthesis of automated systems, more like..



Part 1:  Basic of proportional logic, and constraints encoding 

Today:   Basic of proportional logic



All Greeks are human. 

All human are mortal.

All Greeks are mortal. 
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Not all human are mortal.
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Mortal

Human Greeks Mortal



2000 years ago,  Boole came up with the idea of using symbolic variables!

Replace:  

Greeks by p, 

Human by q, 

Mortal by r

All Greeks are human. 

All human are mortal.

All Greeks are mortal. 

If p then q ( p -> q) 

If q then r (q ->r)

If p then r (p ->r) 



Propositional Logic

• Propositional variables: variables which are either True or False.   ( p, q, r, .., x, y) 

• Abstract the information to represent it in a propositional variable 

•  Variable p represents “Crazy rich Asians is a good movie” 

• If P is True:  “Crazy rich Asians is a good movie” is True sentence. 

• If P is  False:  “Crazy rich Asians is a good movie” is False sentence.



Propositional Logic

• Propositional variables (p,q,r..) 

• Operators:  

• Unary ( ) 

• Binary ( ) 

• Punctuations {“(“, “)” }  

¬

∨ , ∧ , ⊕ , . .

((p ∨ q) ∨ r), (¬(p ∨ q))Example: 
Propositional formula or Boolean Formula



Propositional Logic

•    is a function that maps variables of a propositional formula to {0,1}.  τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such  can exists ?τ

•  is satisfying assignment for F.  We use  to represent. τ τ ⊧ F

•  satisfies formula F if and only if  is 1.τ F(τ)

2variables(F)

P Q R
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

F(τ) : ((1 ∨ 0) ∨ 1) = 1



Propositional Logic

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all  in ,  is 1, then F is valid.  τ 2variables(F) F(τ)

• If there exists a  such that  , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is  is valid ? F = ((p ∨ q) ∨ r) Is  is valid ? F = (p ∨ ¬p)

• If there does not exists a  in  such that   is 1, then F is unsatisfiable.  τ 2variables(F) F(τ)

Is  is unsatisfiable? F = ((p ∨ q) ∨ r) Is  is unsatisfiable ? F = (p ∧ ¬p)



Propositional Logic

• Set of all satisfying assignment of F is called models.    models(F) = {τ |F(τ) = 1}

Models(¬F) = 2variables ∖ Models(F)

Models(F ∨ G) = Models(F) ∪ Models(G)

Models(F ∧ G) = Models(F) ∩ Models(G)

• Equivalent formulas:  Two formulas F and G are considered to be equivalent to  

each other if and only if they both have same models, that is, if 
Models(F) = Models(G), F ≡ G .



Conjunction Normal Form (CNF)

• F = (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Clauses Literals : x1, ¬x1, x2, ¬x2, x3, ¬x3

CNF:    

where  

where   

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

SAT solvers takes 

CNF formulas as input.



Can every formula F can be represented  in CNF form, say ? FCNF



Can every formula F can be represented in CNF form, say ? FCNF

Yes, every F can be represented in , such that  FCNF F ≡ FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

FCNF = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ x4)

,  Can you convert F into ?F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) ∨ (x5 ∧ x6) FCNF

In the worst case, it may take exponential many steps. Can we do better?

2n, size of equivalent ?F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn) FCNF



Equisatisfiable Formulas
• F = (p ∨ α) ∧ (¬p ∨ β) G = (α ∨ β)

F and G are Equisatisfiable. F is satisfiable if and only if G is satisfiable. 

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

= (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

= (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

= (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

= FCNF

Do we really need double implication if we 
are only interested in satisfiability?

, size of equivalent ?F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn) FCNF 2n + n + 1

This is called, Tseytin transformation 
(https://en.wikipedia.org/wiki/Tseytin_transformation)

https://en.wikipedia.org/wiki/Tseytin_transformation


Every formula F can be represented  in CNF form, say  in polynomial time  

such that F is satisfiable if and only if   is satisfiable. 

FCNF

FCNF
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