COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https:/priyanka-golia.github.io/teaching/COL-750/index.html

LTL Syntax
F="True

= p (atomic proposition)
:FIAFZ’Fl\/FZ’Fl — F2,F1 (_)FZ
— _IFl

= N F; Nis“Next”. F; is True at next step. Often represented as O, X..

F, U F, Uis"“Until”. F, is True at “some point, say t”, and until then £ is True.
At “t”, F; doesn’t have to hold any more!

LTL Syntax

F= NF, N is “Next”. F is True at next step. Often represented as O, X..

[f you press the accelerator, the car will move in the next step.
accelerate — N moving

[f you shoot the ball, the result will be known in the next step.

shoot — N (goal vV miss)

F= F,UF, Uis“Until" F,is True at “some point”, and until then F/ is True.

Mario will keep jumping until he lands.
jumping U landed

The emergency light will stay on until the power comes back.

EmergencyLight U PowerRestored

LTL Syntax Sequence of states (paths).

arbitrary arbitrary arbitrary arbitrary

Atomic prop. P ‘—"—>‘—>‘—"—'

arbitrary arbitrary arbitrary arbitrary
1% N\ —(1% A\ 1d pAqg arbitrary

LTL Syntax

Primary temporal operators: N U

Eventually) F F will become true at some point in the future.

OF=TrueUF 7P 7P 7P arbitrary
O*O*O—’O*Oﬁ

P P P P 1%

Always (valid) []JF F'is always True. O—.O_.O_.O_.O_.

(JF =-~O-F (Never (Eventually (= F))).

LTL Syntax

Primary temporal operators: N U

Weak Until — F; W F,, F, must remain true until /, becomes true, but F, doesn'’t
necessarily need to become true at any point.

FWF, = (F,UF,) V(

F1) ltis considered weaker version of U, which requires
F, to eventuallyTrue.

System is in safe mode W system is ready

LTL Syntax

Primary temporal operators: N U

Release — F| R F,, F, must remain true until and including the point

where F| first becomes true, but /| doesn’t necessarily need
to become true at any point.

FRF,=((F, A F)W (5 AF)))

LTL: Operator Precedence HowtoreadN p U g?

-,),[],N Binds stronger than U, A,V , - , ©

NpUg=((Np)Ug) Thenextstate mustsatisfy p, and p must hold until q happens

[1pV g={dp) V q) Either p always holds or g must hold in the current state.

Binds from right to left: = Np = = (Np)

U Binds stronger than A,V , - , & pUgVvr=(@pUqg)Vr

LTL: Common Cases

Response — If p then eventuallyq. p - (g

Precedence —Ifpthenquntilr. p—>gUr =p - (gUr)
Stability — Once we reach the stable state we will always be in stable state.
arbitrary arbitrary
Progress — We will always reach the stable state or desired state.
D 0 p arbitrary arbitrary arbitrary arbitrary

OﬁOﬁOﬁOﬁOﬁOﬁ

Correlation — Eventually p implies eventually g. (>p — (}q

LTL: Formulas

Duality Law = Np= N —p —'QpE L|—p " Lp = <>_'P

AbsorptionLaw QO OP= OO P OoOP=00p

Distributive Law N(p U g) = ((N p) U (N gq)) Opvag = OpvOq
O A ZOpAQq (pAg) = OpAlg

ExpansionLaw pUqg =gV (pA (N(p U q)) [1p =p AN p))
Op =pV (N (O p))

LTL: Examples
Traffic light is green infinitely often. []<) green

Once red, the light can’t become green immediately. [](red — —N green)

Once red, the light always becomes green eventually after being yellow for some time.

(red — ({) green A (—green U yellow))) [1(red — N (red U (yellow A N (yellow U green))))

[f an intruder is detected, then an alert must be raised at the 3 step.

[1 (UntruderDettected — (N —alert A N N —alert A N N N alert))

A robot must keep moving until it reaches the charging station, and once charged, it must
always eventually move again.

(Move U AtChargeStation) A [](Charged — Move)

LTL: Examples

[f an intruder is detected, then an alert must be raised at the 3 step.

[1 (IntruderDettected — (N malert A N N —alert A N N N alert))

A robot must keep moving until it reaches the charging station, and once charged, it must
always eventually move again.

(Move U AtChargeStation) A [](Charged — QMove)

LTL: Semantics

We interpret our temporal formulae in a discrete, linear model of time.

M = < N,I> ,where N is a set of Natural numberand I : N — 2%

I maps each Natural number (representing a moment in
time) to a set of propositions

Let # = ay, a;, ay, ... n(l) =a; APat i level.

i
T =d;,di1,4i10, .- Suffixof &

LTL: Semantics Semantics with respect to a given Trace (or Path) 7

Let 7 = ay,a;,a,,... na(i)=a;, APati"level. 7'=a,a;, ,a,,, ... Suffixofz
TEPp Iff p € 7(0) ' Ep Iffp € a(i)
TENF, Iff 7! E F, TENF Iffr't EF,

nEFUF, 1ff3j>0, ”/ EF,andn' E F,forall0 <i <
rkE O F, Iff 3j >0, n/ kF F,

rE[]F, Iff Vi >0, n/ EF,

rEQOF, ff3%j >0, #/EF, 3°=Vi>0,3j>i
rEQOF, UtV >0, #/FF, 3°=3i>0,Vj>i

LTL: Semantics Kripke Structure

AP — is a set of atomic propositions (Boolean valued variables, predicates)

Kripke structure over AP as a 4-tuple M = (5,1, R, L)

S = a finite set of states.

| = a set of initial states/ C S

R = a transition relation R C S X S

L. = a labelling function L : § — 24

LTL: Semantics Kripke Structure

Kripke structure over AP as a 4-tuple M = (5,1, R, L)

S = a finite set of states. § — {51, 585,5,}

[=asetofinitial states/ C § [= {s}

R = a transitionrelation R C § X §

R = 1(51,52), (52, 51), (52, 83), (53, 83) }

L = alabelling function L : § — 24° @

L=1{(,1p.q}), (52 19}), (53, {p}H)}

AP:{p,Q}

LTL: Semantics Kripke Structure

Kripke structure over AP as a 4-tuple M = (S,I,R,L) AP={p,q}

S — {Sl’ S2, Sg} I: {Sl} R — {(Sla Sz)a (529 Sl)v (SZ’ SS)a (SS9S3)}

L=1{(s1,1P-q}), (s, 19}),(s3,1p})} » \

M may produce a path w = sy, 55, S, 55, 53, $3, 53, 53, - - -

2 7=1{p.q}. (g}, {p.q}. {q}. {p}. {p}. (P} ... 4@

M can produce words belonging to the language —

Up-qiig)*QpH v Up,.qiiq})”

LTL: Semantics Kripke Structure

Given a kripke structure M and a path 7in M, a state s € §, and an LTL formula F-
. <M,m>FF iff 7> F F, where s is initial state of z
2. <M,s>FF iff <M, x> F Ffor paths starting at s,..

3. <M>EFF. ifft <M,s > F Fforeverys, € I, where [initial states of M.

LTL: Semantics

A formula F is satisfiable if there exists at least one Kripke Structure M, and at least
one initial state s, such that:

<M,s,>FF

A formula F is valid if for all Kripke Structures M, and for all initial states s, ;

<M,s,>FF

LTL model checking — Given formula F, and Kripke Structure M checks if
< M,s, > F F holds for every initial state s, € [

Course Webpage

Thanks!

