
Instructor: Priyanka Golia 

COL:750
Foundations of Automatic Verification 

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html



LTL Syntax
F = True  

=  p  (atomic proposition) 

= , , ,  

=  

F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

¬F1

=   N F1

=   F1 U F2

 is “Next”.  is True at next step. Often  represented as  .N F1 O, X

 is “Until”.  is True at “some point, say t”, and until then  is True. 
At “t”,   doesn’t have to hold any more!
U F2 F1

F1



LTL Syntax

F =   N F1

F =   F1 U F2

 is “Next”.  is True at next step. Often  represented as  .N F1 O, X

 is “Until”.  is True at “some point”, and until then  is True.U F2 F1

If you press the accelerator, the car will move in the next step.
accelerate → N moving

 Mario will keep jumping until he lands.

The emergency light will stay on until the power comes back.
EmergencyLight U PowerRestored

If you shoot the ball, the result will be known in the next step.
shoot → N (goal ∨ miss)

jumping U landed



LTL Syntax Sequence of states (paths).

Atomic prop. P

p arbitrary arbitrary arbitrary arbitrary

N p
arbitrary p arbitrary arbitrary arbitrary

p U q

p ∧ ¬q p ∧ ¬q p ∧ ¬q q arbitrary



LTL Syntax
Primary temporal operators:  N U

Eventually   F◊   will become true at some point in the future.F

◊F ≡ True U F

Always (valid) □ F  is always True.F

□ F ≡ ¬◊¬F (Never (Eventually ( ))).¬F

¬p ¬p ¬p p arbitrary

p p p p p



LTL Syntax
Primary temporal operators:  N U

Weak Until  — ,   must remain true until  becomes true, but  doesn’t  
                                                     necessarily need to become true at any point.  

F1 W F2 F1 F2 F2

It is considered weaker version of , which requires 
 to eventuallyTrue.

U
F2

F1WF2 ≡ (F1 U F2) ∨ (□F1)

System is in safe mode  system is readyW



LTL Syntax
Primary temporal operators:  N U

Release  — ,   must remain true until and including the point  
                                        where  first becomes true, but  doesn’t necessarily need  
                                        to become true at any point.  

F1 R F2 F2
F1 F1

F1R F2 ≡ ((F2 ∧ ¬F1) W (F2 ∧ F1))



LTL: Operator Precedence How to read  ?N p U q

Binds from right to left: ¬Np ≡ ¬(Np)

N p U q ≡ ((N p) U q) The next state must satisfy p, and p must hold until q happens

□ p ∨ q ≡ ((□ p) ∨ q) Either p always holds or q  must hold in the current state.

¬, ◊, □ , N Binds stronger than U, ∧ , ∨ , → , ↔

  Binds stronger than U ∧ , ∨ , → , ↔ pU q ∨ r ≡ (pU q) ∨ r



LTL: Common Cases
Response — If p then eventually q.    p → ◊q

Precedence — If p then q until r.    p → q U r ≡ p → (q U r)

Stability — Once we reach the stable state, we will always be in stable  state.  
       ◊ □ p

Progress 

Correlation

— We will always reach the stable state or desired state.  
     □ ◊p

— Eventually p implies eventually q.  ◊p → ◊q

arbitrary arbitrary p p p

arbitrary arbitrary p arbitrary arbitrary p



LTL: Formulas

Duality Law  ¬ N p ≡  ¬ ◊ p ≡  ¬ □ p ≡

Absorption Law  ◊ □ ◊P ≡  □ ◊ □ P ≡

Expansion Law  p U q ≡ q ∨ (p ∧ (N (p U q))

 ◊p ≡ p ∨ (N (◊ p))

 □ p ≡ p ∧ (N (□ p))

Distributive Law  N(p U q) ≡  ◊(p ∨ q) ≡

 ◊(p ∧ q)  □ (p ∧ q) ≡

 N ¬p  □ ¬p  ◊¬p

 □ ◊ p  ◊ □ p

 ((N p) U (N q))  ◊p ∨ ◊q

 ≢ ◊p ∧ ◊q  □ p ∧ □q



LTL: Examples

Traffic light is green infinitely often. □ ◊ green

Once red, the light can’t become green immediately. □ ( red → ¬N green)

Once red, the light always becomes green eventually after being yellow for some time.

□ (red → (◊ green ∧ (¬green U yellow))) □ (red → N (red U (yellow ∧ N (yellow U green))))

If an intruder is detected, then an alert must be raised at the 3 step.

□ (IntruderDettected → ( N ¬alert ∧ N N ¬alert ∧ N N N alert))

A robot must keep moving until it reaches the charging station, and once charged, it must 
always eventually move again. 

(Move U AtChargeStation) ∧ □ (Charged → ◊Move)



LTL: Examples

If an intruder is detected, then an alert must be raised at the 3 step.

□ (IntruderDettected → ( N ¬alert ∧ N N ¬alert ∧ N N N alert))

A robot must keep moving until it reaches the charging station, and once charged, it must 
always eventually move again. 

(Move U AtChargeStation) ∧ □ (Charged → ◊Move)



We interpret our temporal formulae in a discrete, linear model of time.

LTL: Semantics

, where N is a set of Natural number and  M = < N, I > I : N ↦ 2Σ

 maps each Natural number (representing a moment in 
time) to a set of propositions
I

Let π = a0, a1, a2, … π(i) = ai AP at  level.ith

 = πi ai, ai+1, ai+2, … Suffix of π



LTL: Semantics

Let π = a0, a1, a2, … π(i) = ai AP at  level.ith  = πi ai, ai+1, ai+2, … Suffix of π

π ⊧ p Iff p ∈ π(0)

π ⊧ N F1 Iff π1 ⊧ F1

π ⊧ F1 U F2 Iff , and  for all  ∃j ≥ 0, πj ⊧ F2 πi ⊧ F1 0 ≤ i < j
 π ⊧ ◊ F1 Iff ∃j ≥ 0, πj ⊧ F1

 π ⊧ □ F1 Iff ∀j ≥ 0, πj ⊧ F1

 π ⊧ □ ◊ F1 Iff ∃∞j ≥ 0, πj ⊧ F1 ∃∞ = ∀i ≥ 0,∃j ≥ i

 π ⊧ ◊ □ F1 Iff ∀∞j ≥ 0, πj ⊧ F1 ∃∞ = ∃i ≥ 0,∀j ≥ i

Semantics with respect to a given Trace (or Path) π

πi ⊧ p Iff p ∈ π(i)

πi ⊧ N F Iff πi+1 ⊧ F1



LTL: Semantics Kripke Structure

AP — is a set of atomic propositions (Boolean valued variables, predicates)

Kripke structure over AP as a 4-tuple  M = (S, I, R, L)

S = a finite set of states.

I = a set of initial states I ⊆ S

R = a transition relation R ⊆ S × S

L =  a labelling function L : S → 2AP



LTL: Semantics Kripke Structure

Kripke structure over AP as a 4-tuple  M = (S, I, R, L)

S = a finite set of states.

I = a set of initial states I ⊆ S

R = a transition relation R ⊆ S × S

L =  a labelling function L : S → 2AP

 S1
{p, q}

 S2
{q}

 S3
{p}

AP = {p, q}

S = {s1, s2, s3}

I = {s1}

R = {(s1, s2), (s2, s1), (s2, s3), (s3, s3)}

L = {(s1, {p, q}), (s2, {q}), (s3, {p})}



LTL: Semantics Kripke Structure

Kripke structure over AP as a 4-tuple  M = (S, I, R, L)

 S1
{p, q}

 S2
{q}

 S3
{p}

AP = {p, q}

S = {s1, s2, s3} I = {s1} R = {(s1, s2), (s2, s1), (s2, s3), (s3, s3)}

L = {(s1, {p, q}), (s2, {q}), (s3, {p})}

M may produce a path  w = s1, s2, s1, s2, s3, s3, s3, s3, …

π = {p, q}, {q}, {p, q}, {q}, {p}, {p}, {p}, …

M can produce words belonging to the language — 
({p, q}{q})*({p})ω ∪ ({p, q}{q})ω

πs1



LTL: Semantics Kripke Structure

Given a kripke structure  and a path  in M, a state , and an LTL formula : 

1.             iff , where  is initial state of  

2.             iff  for paths starting at .  

3. .               iff   for every , where  initial states of M.

M π s ∈ S F

< M, π > ⊧ F πso ⊧ F so π

< M, s > ⊧ F < M, π > ⊧ F so

< M > ⊧ F < M, so > ⊧ F so ∈ I I



LTL: Semantics

A formula  is satisfiable if there exists at least one Kripke Structure M, and at least 
one initial state  such that: 

F
so

< M, so > ⊧ F

A formula  is valid if for all Kripke Structures M, and for all initial states : F so

< M, so > ⊧ F

LTL model checking — Given formula , and Kripke Structure M checks if 
  holds for every initial state 

F
< M, so > ⊧ F so ∈ I
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