
Instructor: Priyanka Golia

COL:750
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

From SAT & SMT to Temporal Logic

SAT: Checks whether a propositional formula is satisfiable.

SMT: Extends SAT with richer theories (e.g., arithmetic, arrays).

But what about time?

SAT/SMT/FOL verify properties in static systems.

Many real-world systems evolve over time (e.g., software, robots, protocols).

 "A robot should always eventually return to its charging station."
 "A user who enters a correct password will eventually get access.”
 "How can we verify that a system never reaches an error state?"

Can we express this in SAT or FOL?

From SAT & SMT to Temporal Logic

Linear Temporal Logic (LTL) —

• Assumes a single timeline (one possible sequence of events).

• Each moment in time has a well-defined successor moment.

• Each moment in time has exactly one possible future.

• Introduced by Pneuli in the 1970.

Classical logic (SAT/SMT) = Static Reasoning

Temporal logic = Reasoning over time

“Temporal” here refers to “ordered events”; no explicit notion of time.

From SAT & SMT to Temporal Logic
Linear Temporal Logic (LTL) —

• Assumes a single timeline (one possible sequence of events).

• Each moment in time has a well-defined successor moment.

• Introduced by Pneuli in the 1970.

 Examples:

• Eventually, the system will reach a safe state.

• If a system encounters an error, it never recovers.

• If a red light is on, it must eventually turn green.

• At most one process is in the critical section at any time.

LTL Syntax
F = True

= p (atomic proposition)

=

=

F1 ∧ F2

¬F1

= N F1

= F1 U F2

 is “Next”. is True at next step. Often represented as .N F1 O, X

 is “Until”. is True at “some point”, and until then is True.U F2 F1

LTL Syntax

F = N F1

F = F1 U F2

 is “Next”. is True at next step. Often represented as .N F1 O, X

 is “Until”. is True at “some point”, and until then is True.U F2 F1

If you press the accelerator, the car will move in the next step.
accelerate → N moving

 Mario will keep jumping until he lands.

The emergency light will stay on until the power comes back.
EmergencyLight U PowerRestored

If you shoot the ball, the result will be known in the next step.
shoot → N (goal ∨ miss)

jumping U landed

LTL Syntax Sequence of states (paths).

Atomic prop. P

p arbitrary arbitrary arbitrary arbitrary

N p
arbitrary p arbitrary arbitrary arbitrary

p U q

p ∧ ¬q p ∧ ¬q p ∧ ¬q q arbitrary

LTL Syntax

Primary temporal operators: N U

Additional operators

Eventually F◊ will become true at some point in the future.F

◊F ≡ True U F

Always (valid) □ F is always True.F

□ F ≡ ¬◊¬F (Never (Eventually ())).¬F

LTL Syntax Sequence of states (paths).

Atomic prop. P
p arbitrary arbitrary arbitrary arbitrary

N p
arbitrary p arbitrary arbitrary arbitrary

p U q

p ∧ ¬q p ∧ ¬q p ∧ ¬q q arbitrary

◊ p

¬p ¬p ¬p p arbitrary

□ p

p p p p p

LTL: Operator Precedence How to read ?N p U q

Temporal operators before negation

Next before Until

Always/Eventually before Until

Always/Eventually before logical operators

¬Np ≡ ¬(Np)

N p U q ≡ ((N p) U q)

The next state must satisfy p, and p must hold until q happens

□ p U q ≡ ((□ p) U q)

□ p ∨ q ≡ ((□ p) ∨ q)

Either p always holds or q must hold in the current state.

Always p holds until q happens

LTL: Common Cases

Response — If p then eventually q. p → ◊q

Precedence — If p then q until r. p → q U r ≡ p → (q U r)

Stability — Once we reach the stable state, we will always be in stable state.
 ◊ □ p

Progress

Correlation

— We will always reach the stable state or desired state.
 □ ◊p

— Eventually p implies eventually q. ◊p → ◊q

LTL: Examples

Traffic light is green infinitely often.

□ ◊ green

Once red, the light can’t become green immediately.

□ (red → ¬N green)

Once red, the light always becomes green eventually after being yellow for some time.

□ (red → (◊ green ∧ (¬green U yellow)))

□ (red → N (red U (yellow ∧ N (yellow U green))))

Course Webpage

Thanks!

