
Instructor: Priyanka Golia

COL:750
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn’t have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn’t have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers>

 — we can consider only theory of natural numbers.

Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn’t have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers>

 — we can consider only theory of natural numbers.
— we also consider the set of valid sentences over natural numbers.

For example: ∀x x + 1 ≠ 0

Intro to SMT: Satisfiability Modulo Theory
Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers>

 — we can consider only theory of natural numbers.
— we also consider the set of valid sentences over natural numbers.

For example: ∀x x + 1 ≠ 0

A theory T is a set of sentences closed under implications

If , then T → F F ∈ T

Intro to SMT: Satisfiability Modulo Theory

Intro to SMT: Satisfiability Modulo Theory
Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Intro to SMT: Satisfiability Modulo Theory
Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℕ, I >

Intro to SMT: Satisfiability Modulo Theory
Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℕ, I >

No, it is not valid, M :< D = ℤ−, I >

Intro to SMT: Satisfiability Modulo Theory

A formula F is T-satisfiable if there is model M such that .
We write T -satisfiability as .

M ⊧ T ∪ F
M ⊧T F

Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℕ, I >

No, it is not valid, M :< D = ℤ−, I >

Intro to SMT: Satisfiability Modulo Theory

A formula F is T-satisfiable if there is model M such that .
We write T -satisfiability as .

M ⊧ T ∪ F
M ⊧T F

Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℕ, I >

No, it is not valid, M :< D = ℤ−, I >

T: set of true sentences in arithmetic over natural numbers.

Is satisfiable ?, we need to restrict our domain to set of natural numbers, and assume
the knowledge of natural number arithmetic like

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Intro to SMT: Satisfiability Modulo Theory

A formula F is T-satisfiable if there is model M such that .
We write T -satisfiability as .

M ⊧ T ∪ F
M ⊧T F

Is F = satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℕ, I >

No, it is not valid, M :< D = ℤ−, I >

T: set of true sentences in arithmetic over natural numbers.

Is satisfiable ?, we need to restrict our domain to set of natural numbers, and assume
the knowledge of natural number arithmetic like

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is satisfiable!
 M ⊧T F

T: set of true sentences in arithmetic over natural numbers.

Is satisfiable ?, we need to restrict our domain to set of natural numbers, and assume
the knowledge of natural number arithmetic like

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is T-satisfiable!
 M ⊧T F

Intro to SMT: Satisfiability Modulo Theory

Is F = T-satisfiable? ∃x, x > 0

T: set of true sentences in arithmetic over natural numbers.

Is satisfiable ?, we need to restrict our domain to set of natural numbers, and assume
the knowledge of natural number arithmetic like

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is T-satisfiable!
 M ⊧T F

Intro to SMT: Satisfiability Modulo Theory

Also, T ⊧ F

Is F = T-satisfiable? ∃x, x > 0

T: set of true sentences in arithmetic over natural numbers.

Is satisfiable ?, we need to restrict our domain to set of natural numbers, and assume
the knowledge of natural number arithmetic like

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is T-satisfiable!
 M ⊧T F

Intro to SMT: Satisfiability Modulo Theory

Also, T ⊧ F A formula F is T-valid if . We write T -validity as T ⊧ F ⊧T F

Is F = T-satisfiable? ∃x, x > 0

Intro to SMT: Satisfiability Modulo Theory

Intro to SMT: Satisfiability Modulo Theory

Is F = satisfiable? Valid ? In FOL?∃x, x < 0

Intro to SMT: Satisfiability Modulo Theory

Is F = satisfiable? Valid ? In FOL?∃x, x < 0

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℤ, I >

No, it is not valid, M :< D = ℕ, I >

Intro to SMT: Satisfiability Modulo Theory

Is F = satisfiable? Valid ? In FOL?∃x, x < 0

T: set of true sentences in arithmetic over natural numbers.

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℤ, I >

No, it is not valid, M :< D = ℕ, I >

Is F = T-satisfiable? T-Valid ?∃x, x < 0

Intro to SMT: Satisfiability Modulo Theory

Is F = satisfiable? Valid ? In FOL?∃x, x < 0

T: set of true sentences in arithmetic over natural numbers.

Yes, it is satisfiable!
 F is satisfiable. M :< D = ℤ, I >

No, it is not valid, M :< D = ℕ, I >

Is F = T-satisfiable? T-Valid ?∃x, x < 0

No, it is unsatisfiable, ⊭ Tℕ ∪ F

If formula is satisfiable, gives an satisfying

 assignment

Unsatisfiable

Formulas in different theories —> SMT

(Linear integer arithmetic,

Linear real arithmetic, bit vectors, strings)

Chaff SAT Solver — 2000 (DPLL + conflict analysis, heuristics)

Order of magnitude faster than previous SAT solvers

Many real-world problems don’t exhibit worst case
theoretical performance

Chaff SAT Solver — 2000 (DPLL + conflict analysis, heuristics)

Order of magnitude faster than previous SAT solvers

Many real-world problems don’t exhibit worst case
theoretical performance

Alto, 2001, came up with idea of combining SAT solvers with decision procedures for
decidable first-order theories.

SVC, CVC, Yices solver came to picture — first SMT solver was born!!!

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers
Theory Solvers

Theory Solvers
Theory Solver: Difference Logic

Difference logic — the satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form ,
 where x and y are variables, c is a numeric constant, and

The variables can range over either the integers (QF_IDL) or the reals (QF_RDL).

x − y ⊕ c

⊕ ∈ { < , > , ≤ , ≥ , = }

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

x − y ≥ c ≡ y − x ≤ − c

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

x − y ≥ c ≡ y − x ≤ − c

x − y < c

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

x − y ≥ c ≡ y − x ≤ − c

x − y < c ≡ x − y ≤ c − 1 For integers

≡ x − y ≤ c − δ For reals

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

x − y ≥ c ≡ y − x ≤ − c

x − y < c ≡ x − y ≤ c − 1 For integers

≡ x − y ≤ c − δ For reals

x − y > c ≡ y − x < − c

• A conjunction of literals, all of the form .

• From these literals, we form a weighted directed graph with a vertex for each
variable.

• For each literal , there is an edge with weight c.

x − y ≤ c

x − y ≤ c x → y,

Theory Solver: Difference Logic

• A conjunction of literals, all of the form .

• From these literals, we form a weighted directed graph with a vertex for each
variable.

• For each literal , there is an edge with weight c.

x − y ≤ c

x − y ≤ c x → y,

Theory Solver: Difference Logic

• The set of literals is satisfiable iff there is no cycle for which the sum of the
weights on the edges is negative.

• There are a number of efficient algorithms for detecting negative cycles in graphs

• A conjunction of literals, all of the form .

• From these literals, we form a weighted directed graph with a vertex for each
variable.

• For each literal , there is an edge with weight c.

x − y ≤ c

x − y ≤ c x → y,

Theory Solver: Difference Logic

• The set of literals is satisfiable iff there is no cycle for which the sum of the
weights on the edges is negative.

• There are a number of efficient algorithms for detecting negative cycles in graphs

(x − y = 5) ∧ (z − y ≥ 2) ∧ (z − x > 2) ∧ (w − x = 2) ∧ (z − w < 0)

Theory Solvers

Linear Arithmetic Solver

Handles inequalities and equalities over integers or real numbers:

Techniques: Fourier-Motzkin elimination, Simplex algorithm.

Check if ?(x + 2y ≤ 10) ∧ (x − y ≥ 3)

Bit-Vector Solver

Deals with fixed-width integers and bitwise operations:

Techniques: Bit-blasting (reducing bit-vector problems to SAT), word-level
reasoning

 Check if x > > 4 = 0x0A

Theory Solvers

Theory Propagation

Deducing new constraints or facts based on existing ones.
For example, in linear integer arithmetic:

given , we can deduce (x ≥ 5) ∧ (y = x + 2) y > = 7

Theory Consistency Checking

Check if a set of constraints is consistent within the theory.
If not, it provides a conflict (a minimal subset of constraints that are unsatisfiable)

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

SMT Solvers

Two main approaches:

1. “Eager” approach

1. Translate into an equisatisfiable propositional formula

2. Feed it to any SAT solver

2. “Lazy” approach

1. Abstract the input formula to a propositional formula

2. Feed it to a SAT solver

3. Use a theory solver to refine the formula and guide the SAT solver

SMT Solvers

Two main approaches:

1. “Eager” approach

1. Translate into an equisatisfiable propositional formula

2. Feed it to any SAT solver

2. “Lazy” approach

1. Abstract the input formula to a propositional formula

2. Feed it to a SAT solver

3. Use a theory solver to refine the formula and guide the SAT solver

UCLID

SMT Solvers

Two main approaches:

1. “Eager” approach

1. Translate into an equisatisfiable propositional formula

2. Feed it to any SAT solver

2. “Lazy” approach

1. Abstract the input formula to a propositional formula

2. Feed it to a SAT solver

3. Use a theory solver to refine the formula and guide the SAT solver

UCLID

Cvc5, z3, MathSAT, OpenSMT

SMT solving — Lazy Approach

SMT solving — Lazy Approach

Theory: Equality with Uninterpreted Functions

SMT solving — Lazy Approach

(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

Theory: Equality with Uninterpreted Functions

SMT solving — Lazy Approach

(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

Theory: Equality with Uninterpreted Functions

p1 ¬p2 p3 ¬p4

SMT solving — Lazy Approach

(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

Theory: Equality with Uninterpreted Functions

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4)

SAT solver returns σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

SMT solving — Lazy Approach

(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

Theory: Equality with Uninterpreted Functions

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4)

SAT solver returns σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

Theory solver checks if is consistent or not!! σ

SMT solving — Lazy Approach

(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

Theory: Equality with Uninterpreted Functions

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4)

SAT solver returns σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

Theory solver checks if is consistent or not!! σ

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) ∧ (¬p1 ∨ p2 ∨ p3 ∨ p4)

SMT solving — Lazy Approach
(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) σ ⊧ F σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ
Send .(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) ∧ (¬p1 ∨ p2 ∨ p3 ∨ p4) σ = {p1 ↦ 1,p2 ↦ 1,p3 ↦ 1,p4 ↦ 0}

At last SAT Solver returns UNSAT, the original formula in UF is UNSAT

SMT solving — Lazy Approach
(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) σ ⊧ F σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ
Send .(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) ∧ (¬p1 ∨ p2 ∨ p3 ∨ p4) σ = {p1 ↦ 1,p2 ↦ 1,p3 ↦ 1,p4 ↦ 0}

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ

At last SAT Solver returns UNSAT, the original formula in UF is UNSAT

SMT solving — Lazy Approach
(g(a) = c) ∧ (f(g(a)) ≠ f(c) ∨ g(a) = d) ∧ (c ≠ d)

p1 ¬p2 p3 ¬p4

Send to a SAT solver.(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) σ ⊧ F σ = {p1 ↦ 1,p2 ↦ 0,p3 ↦ 0,p4 ↦ 0}

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ
Send .(p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) ∧ (¬p1 ∨ p2 ∨ p3 ∨ p4) σ = {p1 ↦ 1,p2 ↦ 1,p3 ↦ 1,p4 ↦ 0}

 is not consistent, Theory solver returns UNSAT. Add as a clause. σ ¬σ

Send (p1 ∧ (¬p2 ∨ p3) ∧ ¬p4) ∧ (¬p1 ∨ p2 ∨ p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3 ∨ p4)

At last SAT Solver returns UNSAT, the original formula in UF is UNSAT

SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M, and returns M.

SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M, and returns M.

If M/() is T-unsatisfiable, add as a clauseσ ¬M

Identify a T-unsatisfiable subset of , and as a clauseMo M ¬Mo

SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M, and returns M.

If M/() is T-unsatisfiable, add as a clauseσ ¬M

Identify a T-unsatisfiable subset of , and as a clauseMo M ¬Mo
In our previous example, we could have added

 instead of (¬p1 ∨ p2 ∨ p4) (¬p1 ∨ p2 ∨ p3 ∨ p4)

SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M, and returns M.

If M/() is T-unsatisfiable, add as a clauseσ ¬M

Identify a T-unsatisfiable subset of , and as a clauseMo M ¬Mo
In our previous example, we could have added

 instead of (¬p1 ∨ p2 ∨ p4) (¬p1 ∨ p2 ∨ p3 ∨ p4)

Backtrack to a point where M was still T-Satisfiable,
use this to pass more explanation to SAT solver.

Can have combinations of
theories!

Task is to find an assignment
to such that is
satisfiable!

Vars(ϕ) ϕ

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

Only sees Boolean Skeleton
of the problem!

Builds partial model by
assigning truth values to literals

Sends these literals to the core
as assertions

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

Only sees Boolean Skeleton
of the problem!

Builds partial model by
assigning truth values to literals

Sends these literals to the core
as assertions

Sends each assertions to the appropriate theory

Handles theory combinations

Sends deduced literals to other theories/SAT solver

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

Only sees Boolean Skeleton
of the problem!

Builds partial model by
assigning truth values to literals

Sends these literals to the core
as assertions

Sends each assertions to the appropriate theory

Handles theory combinations

Sends deduced literals to other theories/SAT solver

Theory Solvers!
Decide T-satisfiability of a conjunction of literals.

SMT solvers

CORE
Engine

ArraysArithmetic

Bit
Vectors

UF

SAT Solvers

Assertions

Explanations,
conflicts,
propagations

From SAT & SMT to Temporal Logic

SAT: Checks whether a propositional formula is satisfiable.

SMT: Extends SAT with richer theories (e.g., arithmetic, arrays).

But What About Time?

SAT/SMT/FOL verify properties in static systems.

Many real-world systems evolve over time (e.g., software, robots, protocols).

 "A robot should always eventually return to its charging station."
 "A user who enters a correct password will eventually get access.”
 "How can we verify that a system never reaches an error state?"

Can we express this in SAT or FOL?

From SAT & SMT to Temporal Logic

Classical logic (SAT/SMT) = Static Reasoning

Temporal logic = Reasoning over time

Linear Temporal Logic (LTL) Assumes a single timeline (one possible sequence
of events).

Next Class: Linear Temporal Logic (LTL)

Course Webpage

Thanks!

