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Intro to SMT: Satisfiability Modulo Theory
Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers> 

 — we can consider only theory of natural numbers. 
— we also consider the set of valid sentences over natural numbers. 

For example: ∀x x + 1 ≠ 0

A theory T is a set of sentences closed under implications

If , then T → F F ∈ T
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Is F =   satisfiable? Valid ? In FOL?∃x, x < 0

T:  set of true sentences in arithmetic over natural numbers.  

Yes, it is satisfiable!  
 F is satisfiable. M :< D = ℤ, I >

No, it is not valid, M :< D = ℕ, I >

Is F =     T-satisfiable? T-Valid ?∃x, x < 0

No, it is unsatisfiable,  ⊭ Tℕ ∪ F



If formula is satisfiable, gives an satisfying 

 assignment

Unsatisfiable

Formulas in different theories    —> SMT  

(Linear integer arithmetic,  

Linear real arithmetic, bit vectors, strings)
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Chaff SAT Solver — 2000 (DPLL + conflict analysis, heuristics)

Order of magnitude faster than previous SAT solvers

Many real-world problems don’t exhibit worst case  
theoretical performance

Alto, 2001, came up with idea of combining SAT solvers  with decision procedures for  
decidable first-order theories.

SVC, CVC, Yices solver came to picture — first SMT solver was born!!!
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Theory Solvers
Theory Solver: Difference Logic

Difference logic — the satisfiability of a conjunction of arithmetic atoms. 
 
Each atom is of the form ,   
                     where x and y are variables, c is a numeric constant, and 
                                                                             
 
The variables can range over either the integers (QF_IDL) or the reals (QF_RDL).

x − y ⊕ c

⊕ ∈ { < , > , ≤ , ≥ , = }
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The first step is to rewrite everything in terms of ≤

x − y = c ≡ (x − y ≤ c) ∧ (y − x ≤ − c)

x − y ≥ c ≡ y − x ≤ − c

x − y < c ≡ x − y ≤ c − 1 For integers

≡ x − y ≤ c − δ For reals

x − y > c ≡ y − x < − c
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x − y ≤ c x → y,

Theory Solver: Difference Logic

• The set of literals is satisfiable iff there is no cycle for which the sum of the 
weights on the edges is negative.  

• There are a number of efficient algorithms for detecting negative cycles in graphs

(x − y = 5) ∧ (z − y ≥ 2) ∧ (z − x > 2) ∧ (w − x = 2) ∧ (z − w < 0)



Theory Solvers

Linear Arithmetic Solver 

Handles inequalities and equalities over integers or real numbers: 

Techniques: Fourier-Motzkin elimination, Simplex algorithm. 

Check if  ?(x + 2y ≤ 10) ∧ (x − y ≥ 3)

Bit-Vector Solver 

Deals with fixed-width integers and bitwise operations: 

Techniques: Bit-blasting (reducing bit-vector problems to SAT), word-level 
reasoning 

 Check if  x > > 4 = 0x0A



Theory Solvers

Theory Propagation 

Deducing new constraints or facts based on existing ones.  
For example, in linear integer arithmetic:  

given , we can deduce  (x ≥ 5) ∧ (y = x + 2) y > = 7

Theory Consistency Checking 
 
Check if a set of constraints is consistent within the theory.  
If not, it provides a conflict (a minimal subset of constraints that are unsatisfiable)
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SMT Solvers

Two main approaches: 

1. “Eager” approach 

1. Translate into an equisatisfiable propositional formula 

2. Feed it to any SAT solver 

2.  “Lazy” approach 

1. Abstract the input formula to a propositional formula 

2. Feed it to a SAT solver 

3. Use a theory solver to refine the formula and guide the SAT solver

UCLID

Cvc5, z3, MathSAT, OpenSMT
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SMT solving — Lazy Approach Enhancements 

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M, and returns M.

If M/( ) is T-unsatisfiable, add  as a clauseσ ¬M

Identify a T-unsatisfiable subset  of , and as a clauseMo M ¬Mo
In our previous example, we could have added 

 instead of  (¬p1 ∨ p2 ∨ p4) (¬p1 ∨ p2 ∨ p3 ∨ p4)

Backtrack to a point where M was still T-Satisfiable,  
use this to pass more explanation to SAT solver.



Can have combinations of 
theories! 

Task is to find an assignment 
to  such that  is  
satisfiable!

Vars(ϕ) ϕ
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SAT Solvers

Only sees Boolean Skeleton 
of the problem!

Builds partial model by  
assigning truth values to literals

Sends these literals to the core 
as assertions

Sends each assertions to the appropriate theory

Handles theory combinations

Sends deduced literals to other theories/SAT solver

Theory Solvers! 
Decide T-satisfiability of a conjunction of literals.



SMT solvers

CORE 
Engine

ArraysArithmetic

Bit 
Vectors

UF

SAT Solvers

Assertions

Explanations,  
conflicts, 
propagations



From SAT & SMT to Temporal Logic

SAT: Checks whether a propositional formula is satisfiable. 

SMT: Extends SAT with richer theories (e.g., arithmetic, arrays). 

But What About Time?  

 
SAT/SMT/FOL verify properties in static systems. 

Many real-world systems evolve over time (e.g., software, robots, protocols). 

                            "A robot should always eventually return to its charging station." 
                            "A user who enters a correct password will eventually get access.” 
                            "How can we verify that a system never reaches an error state?" 

Can we express this in SAT or FOL?  



From SAT & SMT to Temporal Logic

Classical logic (SAT/SMT) = Static Reasoning 

Temporal logic = Reasoning over time 

Linear Temporal Logic (LTL)  Assumes a single timeline (one possible sequence 
of events). 

  



Next Class: Linear Temporal Logic (LTL) 
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