COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

First Order Logic (FOL): Semantics Models of FOL!

Model of FOL is a tuple $\langle D, I \rangle$

D - non-empty domain of objects (set of objects, finite, infinite, uncountable) I — Interpretation function.

Interpretation — assign a meaning.

If c is a constant symbol then I(c) is an object in D.

- Defined for all inputs: Single output per input If f is a function symbol of arity n, then I(f) is a total function from $D^n \mapsto D$
- If p is a predicate symbol of arity n, then I(p) is a subset of D^n . If a tuple $O = \langle o_1, \ldots, o_n \rangle \in I(p)$, then we say that p is True for tuple O.

D = {BOB, JOHN, NULL} Bob is taller than John. John is father of Bob.

If c is a constant symbol then I(c) is an object in D.

If f is a function symbol of arity n, then I(f) is a total function from $D^n \mapsto D$

I(FatherOf)(BOB) = JOHN

If p is a predicate symbol of arity n, then I(p) is a subset of D^n . If a tuple $O = \langle o_1, \dots, o_n \rangle \in I(p)$, then we say that p is True for tuple O.

- I(Bob) = BOB
- I(FatherOf)(JOHN) = NULL. I(FatherOf)(NULL) = NULL.
- $I(TallenThan) = \{ < BOB, JOHN > \}$

First Order Logic (FOL): Semantics How do we handle variables?

Given a model $M = \langle D, I \rangle$ and a variable x, and object $o \in D$, Extended Model $M[x \rightarrow o]$ as a model that is identical to M, except that I is extended to interpret x as o.

 $\exists x \ TallerThan(x, FatherOf(x))$

If we can find an object o in D such that following is True:

 $TallerThan(x, FatherOf(x))^{M[x \rightarrow o]}$

F = TallerThan(x, FatherOf(x))

 $D = \{BOB, JOHN, NULL\}$

 $I(Bob) = \{BOB\}, I(John) = \{JOHN\}, I(NULL) = \{NULL\}$

 $I(FatherOf)(BOB) = \{JOHN\}, I(FatherOf)(JOHN) = \{NULL\}, I(FatherOf)(NULL) = \{NULL\}$

I(*TallerThan*) = < *BOB*, *JOHN* >

 $\sigma = \langle John \rangle$?

Is F True, with respect to M<D,I>, where variable assignment

How do we define the meaning of terms and formulas relative to a given model $M = \langle D, I \rangle$ Notation: Interpretation of a string(terms/formula) F relative to a model M, and an assignment σ by $F^{M,\sigma}$ **Interpreting Terms:**

If t is a constant or a variable, then

If t is a function $f(t_1, \ldots, t_n)$, then we have: t^M

 $FatherOf(x)^{M,\sigma} = I(FatherOf)(x^{M,\sigma})$

 $FatherOf(x)^{M,\sigma} = NULL$

we have:

$$t^{M,\sigma} = I(t)$$
 $x^{M,\sigma} = I(John) = JOHN.$

$$I^{I,\sigma} = I(f)(t_1^{M,\sigma}, \dots, t_n^{M,\sigma})$$

 $FatherOf(x)^{M,\sigma} = I(FatherOf)(JOHN)$

 $x^{M,\sigma} = I(John) = JOHN.$ FatherOf(x)^{M,\sigma} = NULL

Interpreting Formulas:

1. Atomic Formulas F of the form $p(t_1, ..., t_m)$

 $TallerThan^{F,\sigma} = \langle JOHN, NULL \rangle$

TallerThan^{M,σ} \notin *I*(*TallerThan*), $F^{M,\sigma}$ is False.

Interpreting Formulas:

1. Atomic Formulas F of the form $p(t_1, ..., p_{n-1})$

$$F^{M,\sigma} = \begin{cases} \text{True if } < \\ \text{False otherwise} \end{cases}$$

2. If *F* is of the form $F_1 \circ F_2$ where o is logical connective: $F^{M,\sigma} = F_1^{M,\sigma} \circ F_2^{M,\sigma}$

3. If *F* is of the form $\neg F_1$:

$$F^{M,\sigma} = \neg F_1^{M,\sigma}$$

$$, t_n)$$

$$t_1^{M,\sigma}, \dots, t_n^{M,\sigma} > \in I(p)$$

erwise.

4. If *F* is of the form $\exists xF_1$ $F^{M,\sigma} = \begin{cases} True ext{ if there exists an } o \in D ext{ such that } F_1^{M,\sigma[x \to o]} ext{ is True} \\ False ext{ otherwise.} \end{cases}$

5. If *F* is of the form $\forall xF_1$ $F^{M,\sigma} = \begin{cases} True \text{ if for all } o \in D, F_1^{M[x \to o]} \text{ is True} \\ False otherwise. \end{cases}$

 $F = \exists x \ TallerThan(x, FatherOf(x))$

We need to find a model M such that following is True:

This is true iff we can find an object o in D such that:

How about $F = \forall x \ TallerThan(x, FatherOf(x))$?

- $[\exists x \ TallerThan(x, FatherOf(x))]^M$
- $TallerThan(x, FatherOf(x))^{M[x \rightarrow o]}$

BOB is such an object.

 $F = \forall x \ TallerThan(x, FatherOf(x))$

We need to find a model M such that following is True:

This is true iff for all objects o in D the following is True:

We saw that $TallerThan(x, FatherOf(x))^{M[x \rightarrow JOHN]}$ is False.

- $[\forall x \ TallerThan(x, FatherOf(x))]^M$
- $TallerThan(x, FatherOf(x))^{M[x \to o]}$
- $F = \forall x \ TallerThan(x, FatherOf(x))$ is False.

Assignment: For a domain D is a function $\sigma: X \mapsto D$

Given M = (D,I) and given an assignment α , satisfaction relation M, $\sigma \models F$ is follows: $M, \sigma \models \mathsf{T}$ $M, \sigma \nvDash \bot$ $M, \sigma \models P(t_1, \dots, t_n) - \inf I(P)((t_1^M, \dots, t_n^M)^{\sigma}) = 1$ $M, \sigma \models \neg F - \operatorname{iff} M, \sigma \nvDash F$ $M, \sigma \models F \land G - \operatorname{iff} M, \sigma \models F \text{ and } M, \sigma \models G$ $M, \sigma \models F \lor G - \operatorname{iff} M, \sigma \models F \text{ or } M, \sigma \models G$ $M, \sigma \models F \rightarrow G - \operatorname{iff} M, \sigma \nvDash F \text{ or } M, \sigma \models G$ $M, \sigma \models \forall xF - \operatorname{iff} M, \sigma[x \mapsto a] \models F \text{ for all } a \in D$ $M, \sigma \models \exists xF - \inf M, \sigma[x \mapsto a] \models F$ for some $a \in D$

Where X is set of variables of formula

First Order Logic (FOL): analogy with Propositional Logic

Truth table in propositional logic is similar to Model $M = \langle D, I \rangle$ in FOL

Truth table consists of various truth assignments (σ) and to check if $\sigma \models F$, we need to check if $F(\sigma) = 1$ in truth table. Similarly in FOL, we need to check if $I^{M,\sigma}$ is 1 or not!

Given a formula, the truth table is fixed, however in FOL, model M depends on the Domain. We can have $M_1 = \langle D_{real}, I \rangle, M_2 = \langle D_{int}, I \rangle, \dots, \dots$

First Order Logic (FOL): Validity and Satisfiability

When $M, \sigma \models F$, we say that M satisfies F with σ

A formula F is

Valid — iff $M, \sigma \models F$ holds for all models M and assignments σ .

Satisfiable — iff there is some model *M*, and some assignment σ such that $M, \sigma \models F$

Unsatisfiable — iff it is not satisfiable

True – **F** is called True in M, iff all assignments σ in M, $M, \sigma \models F$

First Order Logic (FOL): Validity and Satisfiability

Decidability - a solution to a decision problem is an algorithm that takes problem as input, and always terminates, producing a correct "yes" or "no" output

Valid — iff $M, \sigma \models F$ holds for all models M and assignments σ .

The decision problem of validity of FOL is **undecidable** (given any FOL formula F) The decision problem of of FOL is **undecidable** (given any FOL formula F)

- **Satisfiable** iff there is some model M, and some assignment σ such that M, $\sigma \models F$

First Order Logic (FOL): Equivalent Formulas

F and G are called equivalent to each other if and only if:

 $F \models G$ and for each model and assignment (M', σ') if $M', \sigma' \models G$, then $M', \sigma' \models F$ (notation $G \models F$)

Exercise: Is $\neg \forall x P(x) \equiv \exists x \neg P(x)$

- For each model and assignment (M, σ) , if $M, \sigma \models F$, then $M, \sigma \models G$ (notation)

- FOL: grammar for a rational abstract thinking FOL: Doesn't have a knowledge of any specific matter. Theory = Subject Knowledge + FOL
- Model M <D = set of natural numbers>
 - we can consider only theory of natural numbers.
 - we also consider the set of valid sentences over natural numbers.
 - For example: $\forall x \ x + 1 \neq 0$

- Model M <D = set of natural numbers>
 - we can consider only theory of natural numbers.

A theory T is a set of sentences closed under implications

Theory = Subject Knowledge + FOL

— we also consider the set of valid sentences over natural numbers. For example: $\forall x \ x + 1 \neq 0$

If $T \to F$, then $F \in T$

Is $F = \exists x, x > 0$ satisfiable? Valid ? In FOL?

- Yes, it is satisfiable!
- $M :< D = \mathbb{N}, I > F$ is satisfiable.
- A formula F is T-satisfiable if there is model M such that $M \models T \cup F$. We write T -satisfiability as $M \models_T F$.
- T: set of true sentences in arithmetic over natural numbers. Is $T \cup F$ satisfiable?, we need to restrict our domain to set of natural numbers, and assume the knowledge of natural number arithmetic like $\forall x \ x > 0, \forall x \ x + 1 \neq 0$

Yes, it is satisfiable!

 $M \models_T F$

- No, it is not valid, $M :< D = \mathbb{Z}^{-}, I >$

T: set of true sentences in arithmetic over natural numbers.

the knowledge of natural number arithmetic like $\forall x \ x > 0, \forall x \ x + 1 \neq 0$

Is $F = \exists x, x > 0$ T-satisfiable?

Also, $T \models F$

Is $T \cup F$ satisfiable?, we need to restrict our domain to set of natural numbers, and assume

Yes, it is T-satisfiable! $M \models_T F$

A formula F is T-valid if $T \models F$. We write T -validity as $\models_T F$

Is $F = \exists x, x < 0$ satisfiable? Valid ? In FOL?

Yes, it is satisfiable!

 $M :< D = \mathbb{Z}, I > F$ is satisfiable.

T: set of true sentences in arithmetic over natural numbers.

Is $F = \exists x, x < 0$ T-satisfiable? T-Valid ?

No, it is unsatisfiable, $\nvDash T_{\mathbb{N}} \cup F$

- No, it is not valid, $M :< D = \mathbb{N}, I >$

https://smt-lib.org/logics.shtml

Course Webpage

Thanks!