
Instructor: Priyanka Golia

COL:750
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:
1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

Assume: m many person, n many lights.

Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:
1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let represents that person is in the room, and represents that light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has
m+1 variables.

Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let represents that person is in the room, and represents that light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has
m+1 variables.

Repetition: writing separate formulas for each room.
As the number of rooms increases, the formula grows linearly.

No generalization: We cannot express the general rule "For any room, if no one is
present, the light should be off " without enumerating each case.

First Order Logic (FOL)

FOL is a logical system for reasoning about properties of objects.

Predicates — describes properties of objects.

Functions — maps objects to one another.

Quantifiers — to reason about multiple objects

First Order Logic (FOL): Objects

Objects are: John, and Marry.
Happy(John) — property “happy” is applied to John.
Happy(Mary) — property “happy” is applied to Mary.
Likes(Mary,John): "Mary likes John."

"John is happy" as P
“Mary is happy” as Q

Propositional variables don’t provide any structure about what the proposition refers to or
relationships between entities — how P and Q are related ?

Objects allow FOL to express relationships, properties, and reasoning about entities.

Objects: It represent entities in a domain of discourse (things we want to reason about),
such as people, numbers, or physical objects.

First Order Logic (FOL): Predicates

Likes(You, Yogurt) ∧ Likes(You, Mango) → Likes(You, MangoLassi) .
Objects: { You, Yogurt, Mango, MangoLassi}.

Predicates: Likes(Obj1, Obj2) ↦ {0,1}

Predicates takes objects as an arguments and evaluate to True or False.

Predicates — describes properties of objects.
Happy(John)
Cute(John)

First Order Logic (FOL): Functions

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date)∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions take objects as an argument and return objects associated with it.

Medianof(x,y,z), +(x,y), Wife(John).

As with predicates, functions can take in any number of arguments, but always return a
single object.

Operate On And Produce

Connectives Propositions A Proposition

Predicates Objects A Proposition

Functions Objects An Object

(↔ , → , ∧ , . .)

First Order Logic (FOL): Quantifiers

There is a number which is both prime and even.
Variables: x.
Predicates: Even(x), Prime(x)
∃x(Even(x) ∧ Prime(x))

There is someone who is taller than I am and weighs more than I do.

Objects: me, Variable: x
Predicates: Taller(x,me), WeighsMore(x,me)

 ∃xTaller(x, me) ∧ WeighMore(x, me)

Existential Quantifier (∃): Expresses the existence of at least one element for which a
statement is true.

For every number x, adding 0 to results in x itself.
Variable: x
Function:
Predicate:

+(x,0)
= (x, + (x,0))

∀x = (x, + (x,0))
For all even numbers x, x is divisible by 2.

Variable: x
Function:
Predicate:

mod(x,2)
even(x), = (mod(x,2),0)

∀x (even(x) → = (mod(x,2),0))

First Order Logic (FOL): Quantifiers

Universal Quantifier (∀): Expresses generalization across all elements.

First Order Logic (FOL): Quantifiers

Scope of Quantifiers: refers to the part of the formula where the quantifier applies to the
variable it introduces.

Bound Variable: A variable is bound if it lies within the scope of a quantifier.

Free Variable: A variable is free if it is not within the scope of any quantifier.
 . x is bounded and y is free∀x P(x) → Q(y)

Nested Quantifiers: When quantifiers are nested, the scope of the inner quantifier is
restricted by the outer quantifier.

∀x((∃yP(x, y)) → Q(x)) Scope of is entire formula.
Scope of is limited to

∀x
∃y P(x, y)

When multiple quantifiers share overlapping scopes, their interactions can lead to significant
differences in meaning.

First Order Logic (FOL): Quantifiers

∀x∃yP(x, y) ∃y∀xP(x, y)

For every x, there exists a y such that P(x, y). There exists a y, for all x such that P(x, y).

Each person can know a different language,
as long as they know at least one language.

There is a single language that everyone
knows.

First Order Logic (FOL): Syntax

Well-Formed Formula (wff) of FOL are composed of six types of symbols (not including
Parenthesis).

1. Constant symbols — representing objects.

2. Functions symbols — functions from pre-specified number of objects to an object.

3. Predicate symbols — more like specify properties to objects. Have specified arity.
 Zero arity predicate symbols are treated as propositional symbols.

4. Variable symbols — will be used to quantify over objects.

5. Universal and existential quantifiers — will be used to indicate the type of quantification.

6. Logical connectives and negation.

First Order Logic (FOL): Syntax

Formula -> Atomic Formula
 | Formula Connective Formula
 | Quantifier Variable Formula
 | Formula
 | (Formula)

¬

Atomic Formula -> where
 are Terms, n is arity.

P(T1, …, Tn)
P ∈ Predicates, Ti

Term -> c, where CONST.
 | v, where
 | , where Functions, are Terms,
n is arity of F.

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

Connective ->
Quantifier ->

↔ | ∧ | ∨ | →
∀ |∃

First Order Logic (FOL): Syntax

Is it a WFF?
TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive.

Term -> c, where CONST.
 | v, where
 | , where Functions, are Terms,
n is arity of F.

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

First Order Logic (FOL): Additional Terminology

Ground Terms — Terms without variables. Refers to Objects. John, Fatherof(John)

Ground Formulas — Formulas without variables.

TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Closed Formulas — formulas in which all variables are associated with quantifier.

∀x Number(x) → Number(+ (x,1))
∀x GreaterThan(x, y) → LessThan(y, x) Y is not associated with quantifier.

Free variables — variables in a formula that don’t have any quantifier. Typically free variables
are treated as being implicitly universally quantified variables.

First Order Logic (FOL): Additional Terminology

All Birds can Fly.

∀x (Bird(x) → Fly(x))

Not all Birds can Fly.

¬(∀x (Bird(x) → Fly(x)))

≡ ∃x (Bird(x) ∧ ¬Fly(x))

All Birds cannot Fly.

∀x (Bird(x) → ¬Fly(x))

≡ ¬(∃x (Bird(x) ∧ Fly(x)))

First Order Logic (FOL): Semantics Models of FOL!

Model of FOL is a tuple < D, I >
D — non-empty domain of objects (set of objects, finite, infinite, uncountable)
I — Interpretation function.

Interpretation — assign a meaning.

If c is a constant symbol then is an object in D. I(c)

If f is a function symbol of arity n, then is a total function from I(f) Dn ↦ D

Defined for all inputs:
Single output per input

If p is a predicate symbol of arity n, then is a subset of . If a tuple
, then we say that p is True for tuple O.

I(p) Dn

O = < o1, …, on > ∈ I(p)

First Order Logic (FOL): Semantics

D = {BOB, JOHN, NULL} Bob is taller than John.
John is father of Bob.

If c is a constant symbol then is an object in D. I(c)

If f is a function symbol of arity n, then is a total function from I(f) Dn ↦ D

If p is a predicate symbol of arity n, then is a subset of . If a tuple
, then we say that p is True for tuple O.

I(p) Dn

O = < o1, …, on > ∈ I(p)

I(Bob) = BOB

I(FatherOf)(BOB) = JOHN I(FatherOf)(JOHN) = NULL . I(FatherOf)(NULL) = NULL .

I(TallenThan) = { < BOB, JOHN > }

Course Webpage

Thanks!

