CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.
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CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.
Heuristics: which variables to pick, what value to assign?

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

Heuristics: how to learn a small conflict clause and unto which level to
backtrack?



Heuristics: how to learn a small conflict clause and upto
which level to backtrack?

AnalyzeConflict(m,F): some choices of clauses are found to be better than others.

Notations:
UIP (Unique Implication Point)

In an implication graph, node “/@d” is a UIP at decision level d if “/ @ d” occurs
in each path from d” decision literals to the conflict.



UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.
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UIP points: In an implication graph, node “/@d” is a UIP
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UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.
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UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.
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UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @ d” occurs in each path from d™

decision literals to the conflict.
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UIP cuts to analyze conflicts:

If [ is UIP, then corresponding UIP cut is (A,B) of the implication graph.
Where,

B contains all the successors of [ from which there is a path to conflict.
A contains the rest.



UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the

implication graph, where B contains all the successors of [ from which there is a path
to conflict, and A contains the rest.
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UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of [ from which there is a path
to conflict, and A contains the rest.
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UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of [ from which there is a path

to conflict, and A contains the rest. ‘
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Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.
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Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.
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Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

* # of variables occurrence in remaining unsatisfied clauses (different variants were
studied in 9os).

* Dynamic heuristics:
* Focus on variables which were useful recently in deriving learned clauses.
* Can be interpreted as reinforcement learning.
 VSIDS: Variable State Independent Decaying Sum.

* Look-ahead

« Spent more time in selecting good variables.



VSIDS: Variable State Independent Decaying Sum

Each literal [ has a counter S(/), initialized to zero.

For every new clause C = {[}, 5, ..., [}, S(};)) is incremented if [, € C.
The unassigned variable and polarity with highest counter is chosen.
Ties are broken randomly.

Periodically (once in 256 conflict), all counters are halved.



VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 Initial value occurrences of “a” in formula F
—a | 5
b 3
—b 3
c 2
—c 3
d 2
—d 4
e 2
—e | 6 Count literal appearances in formula F




VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 Initial value occurrences of “a” in formula F
5
—d e
b 3 (3/
—b 3 .
C 2 ?/
d | 2 Learned clause (mhVaVcV bV k)
—d 4
e 2
—e | 6 Count literal appearances in formula F




VSIDS: Variable State Independent Decaying Sum

Literals| Score

a 4 +1
-a 5

b 3+1
—b 3

c 2+1
mls 3
d 2
—d 4
€ 2
-e 6

Initial value occurrences of “a” in formula F
e
‘3/
da
f’/

Learned clause (©hVaVcV bV k)

Count literal appearances in formula F



VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough?

 Pre-chaff static heuristics — go over all clauses that are not satisfied and
compute some function f(a) for each literal “a”.

* VSLDS
* Extremely low overhead.
* Dynamic & local (conflict driven).

* Focuses the search to learn from the local context.



Run-Time Distribution (Time Limit 1000 seconds)
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