CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

slides.

Taken from Mate Soos s

SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

\IINEL

eGTI

Glucos

Moskewic Goldberg Moskewic Eén Pipatsris Eén Bier Audemar
z Novikov ~ z Eén Sérensso awat Sérensso e

Madigan Madigan ~ S6rensso n Darwich n S S/mon
Zhao Zhao n e

Zhang Zhang

Malik Malik

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

COMS | LCMDis | LCMDist LCMDist
Audemar Bier Bier) ChronoB ChronoB IREEG Cherif
d e e n Liang Xiao TDLV3 Fazekas Habet
Simon Oh Luo Nadel F,eury Terrioux
Ganesh Li Ryvchi Kochemazo Heijsinger
Czarnec Manya n %
ki Lu Zaikin
2022 2023 Poupart Kondratiev
Semenov
Zheng Haberlandt
He Green

Chen Taken from Alex’s slides.

MiniSat-base
d:

Armin Biere’s&
derived:

Others:

CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.
Heuristics: which variables to pick, what value to assign?

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

Heuristics: how to learn a small conflict clause and unto which level to
backtrack?

Heuristics: how to learn a small conflict clause and upto
which level to backtrack?

AnalyzeConflict(m,F): some choices of clauses are found to be better than others.

Notations:
UIP (Unique Implication Point)

In an implication graph, node “/@d” is a UIP at decision level d if “/ @ d” occurs
in each path from d” decision literals to the conflict.

UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.

UIP @ level 1:

UIP @ level 2:

UIP @ level 3:

p; @2 | -ps@l p1@3

Implication Graph.

UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.

UIP @ level1: —p,@1,-p;@1

UIP @ level 2:

UIP @ level 3:

p; @2 | -ps@l p1@3

C3
C
) p,@3
G

Implication Graph.

UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.

UIP @ level1: —p,@1,-p. @1

UIP @ level 2:

UP@level 3 p, @3

Implication Graph.

UIP points: In an implication graph, node “/@d” is a UIP
at decision level d if “/ @d” occurs in each path from d™

decision literals to the conflict.

P, @1

Py @2

p; @4

ps @4

_'p9@3

p, @4

| p, @4

ulp @4 = 77?

UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @d” occurs in each path from d™
decision literals to the conflict.

—“p., @2 4
Pg p; @ ™ 5, @4
_'p9@3

—_—
1
P @4 = p,@4

UIP @4 =777

UIP points: In an implication graph, node “/@d” is a UIP

at decision level d if “/ @ d” occurs in each path from d™

decision literals to the conflict.

P, @1

Py @2

_'p9@3

p; @4

' 4l~

p,@4

First UIP Point:
p4@4

ps @4

Last UIP Point:
_|p1 @4

UIP cuts to analyze conflicts:

If [is UIP, then corresponding UIP cut is (A,B) of the implication graph.
Where,

B contains all the successors of [from which there is a path to conflict.
A contains the rest.

UIP cuts to analyze conflicts: If [is UIP, then corresponding UIP cut is (A,B) of the

implication graph, where B contains all the successors of [from which there is a path
to conflict, and A contains the rest.

@4
P, @1 &

UIP @4 = -p, @4,p, @4 Is it a UIP cut?

UIP cuts to analyze conflicts: If [is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of [from which there is a path
to conflict, and A contains the rest.

l p5@4

p; @1

“pg @2

_'p9@3

—Ipl@4|
! 4

UIP @4 = -p, @4,p, @4 Isita UIP cut? Yes, with respect to —p, @4

UIP cuts to analyze conflicts: If [is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of [from which there is a path

to conflict, and A contains the rest. ‘
q ps @4
P, @1
/|
pg @2 p,@4
TPy @3 "
O
)
—.p1@4| = | p,@4 ‘

UIP @4 = -p,@4,p, @4 Isita UIP cut? Yes, with respect to p, @4

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

* ps @4

_'p8@2

TPy @3

4
. Learned Clause: =(—p; A =pg A =\pg A —1p;)

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

@l & e
q
- 2 4
pS@ p3@ L p4@4
O
)
P @4 =% p,@4 ‘

UIP @4 = -p,@4,p,@4 Learned Clause: =(—pg A ps A —po)

Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

* # of variables occurrence in remaining unsatisfied clauses (different variants were
studied in 9os).

* Dynamic heuristics:
* Focus on variables which were useful recently in deriving learned clauses.
* Can be interpreted as reinforcement learning.
 VSIDS: Variable State Independent Decaying Sum.

* Look-ahead

« Spent more time in selecting good variables.

VSIDS: Variable State Independent Decaying Sum

Each literal [has a counter S(/), initialized to zero.

For every new clause C = {[}, 5, ..., [}, S(};)) is incremented if [, € C.
The unassigned variable and polarity with highest counter is chosen.
Ties are broken randomly.

Periodically (once in 256 conflict), all counters are halved.

VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 Initial value occurrences of “a” in formula F
—a | 5
b 3
—b 3
c 2
—c 3
d 2
—d 4
e 2
—e | 6 Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 Initial value occurrences of “a” in formula F
5
—d e
b 3 (3/
—b 3 .
C 2 ?/
d | 2 Learned clause (mhVaVcV bV k)
—d 4
e 2
—e | 6 Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Literals| Score

a 4 +1
-a 5

b 3+1
—b 3

c 2+1
mls 3
d 2
—d 4
€ 2
-e 6

Initial value occurrences of “a” in formula F
e
‘3/
da
f’/

Learned clause (©hVaVcV bV k)

Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough?

 Pre-chaff static heuristics — go over all clauses that are not satisfied and
compute some function f(a) for each literal “a”.

* VSLDS
* Extremely low overhead.
* Dynamic & local (conflict driven).

* Focuses the search to learn from the local context.

Run-Time Distribution (Time Limit 1000 seconds)

1000

900

800

700

600

500

400

300

200

100

i T T X T T — T T " T
static —+— X M ,
Inc ~——x—-- % i & f
- sum ---%--- L il o" -
vmtf o AN 0 :
vsids256 — = * € ¢
u evsids ; ° -
avg - e - x X ‘-
sc13 A G ”
X ”l ’
N] i .]
o g
e °
I ~ .
3l /’
.
- ’ |
>
,
1 1 1 1 1
0 20 40 60 80 100 120 140

SAT Competition 2013 Application Track Benchmarks Solved by Lingeling

160

Course Webpage

Thanks!

