
Instructor: Priyanka Golia

COL:750
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

S(I,O)

SatisfiesSystem Properties

P(I,O)

Is the always the case that S
satisfies Property P?

How often S satisfies P? Why S doesn’t satisfy P?

 Formal Verification

How often System satisfies Property? Model Counting!

Finding out how many solutions are there for a given set of constraints.

Boolean
Formula
F

Model
counter |Models(F) |

How often System satisfies Property? Model Counting!

Finding out how many solutions are there for a given set of constraints.

ModelCounter(F, count){
Result, σ = CheckSAT(F)
if (Result = = SAT){

count + + }
else Return count
ModelCounter(F ∧ ¬σ, count)}

Assuming access to a NP oracle !

How often System satisfies Property? Model Counting!

Finding out how many solutions are there for a given set of constraints.

 }

ModelCounter(F){

pick x ← VARs(F)
Co = ModelCounter(F(x ↦ 0))

C1 = ModelCounter(F(x ↦ 1))
return Co + C1

 If F is 0 then Return 0
If F is 1 then Return 1

F = x1 ∨ x2

x1

MC(1 ∨ x2) MC(0 ∨ x2)

MC(1 ∨ 1) MC(1 ∨ 0) MC(0 ∨ 1) MC(0 ∨ 0)

Return(1) Return(1) Return(1) Return(0)

1 1 1 0

2 1

3

F = x1 ∨ x2

x1

MC(1 ∨ x2) MC(0 ∨ x2)

MC(1 ∨ 1) MC(1 ∨ 0) MC(0 ∨ 1) MC(0 ∨ 0)

Return(1) Return(1) Return(1) Return(0)

1 1 1 0

2 1

How often System satisfies Property?

x1

x2 x2

0 111

In OBDD, Model count is Sum of
leaf nodes.

Y

X

Z Z Z Z

0 1 0 0 0 1 1 1

Y
Y

X

Z

Y

0 1

Removal of duplicate leaves

Removal of duplicate tests

Removal of duplicate sub-tree

ROBDD — Reduced Ordered Binary Decision Diagrams

F = (x ∧ y) ∨ (¬y ∧ z)

Model Counting

Model Counting

Y

X

Z

Y

0 1

F = (x ∧ y) ∨ (¬y ∧ z)

Model Counting in ROBDD?

Key Observation: We are fixing a variable as
we move from the child to the parent node.

X

0 1 210

21

2
0 +

Bottom-up
approach.

Model Counting

F = x1 ∨ x2

Model Counting in ROBDD?

X

0 1 210

21

2
0 +

Bottom-up
approach.

22

x1

x2

0 1

0

0
22

2
+
2

2
2

22

2
+ 3

Key Observation: We are fixing a variable as
we move from the child to the parent node.

Model Counting

Y

X

Z

Y

0 1

F = (x ∧ y) ∨ (¬y ∧ z)

Model Counting in ROBDD?
230 8

0
4
2

+

0
8
2

+

4
2

8
2

+

2
2

6
2

+

6

4

42
|Models(F) | = 4

Model Counting

F = (x1 ∨ x2) ∧ (x3 ∨ x4) x1 > x2 > x3 > x4

Model Counting

F = (x1 ∨ x2) ∧ (x3 ∨ x4) x1 > x2 > x3 > x4

x2

x1

x4

x3

0 1

ROBDD vs CNF

CNF ROBDD

SAT NP-Hard

Model Count #P

UNSAT Co-NP O(1)

O(|FROBDD |)

O(|FROBDD |)

Different Compilation Forms

NNF: Normal Negation Form

1. Each non-terminal node is either or ∧ ∨

2. Each terminal node is either a literal or or 0 1

F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

x1 ¬x2 x3 ¬x4

∨ ∨

∧

Different Compilation Forms

d-NNF: Deterministic Normal Negation Form (Darwiche 1998)

A NNF is deterministic if for every (OR) node with children following holds:

∨ {c1, c2, …, ck}

∀i ≠ j Models(ci) ∩ Models(cj) = ∅

Any two children of (OR) node don’t share models∨

Different Compilation Forms

d-NNF: Deterministic Normal Negation Form (Darwiche 1998)

A NNF is deterministic if for every (OR) node with children following holds:

∨ {c1, c2, …, ck}

∀i ≠ j Models(ci) ∩ Models(cj) = ∅

Any two children of (OR) node don’t share models∨
F = x1 ∨ x2

x1 x2

∨

Models(x1) = {(x1, x2), (x1, ¬x2)} Models(x2) = {(x1, x2), (¬x1, x2)}

Different Compilation Forms

d-NNF: Deterministic Normal Negation Form (Darwiche 1998)

A NNF is deterministic if for every (OR) node with children following holds:

∨ {c1, c2, …, ck}

∀i ≠ j Models(ci) ∩ Models(cj) = ∅

Any two children of (OR) node don’t share models∨

F = x1 ∨ x2
x1

x2

∨

¬x1

∧ F in d − NNF

Different Compilation Forms

DNNF: Decomposable Normal Negation Form (Darwiche 2011)

A NNF is decomposable if for every (AND) node with children following holds:

∧ {c1, c2, …, ck}

∀i ≠ j Vars(ci) ∩ Vars(cj) = ∅

Any two children of (AND) node don’t share variables/literals∧

F = x1 ∨ x2
x1

x2

∨

¬x1

∧
F in DNNF

Model Counting in d-DNNF
F = x1 ∨ x2

x1

x2

∨

¬x1

∧

F in d − DNNF

Models(¬x1) = {(¬x1, x2), (¬x1, ¬x2)} Models(x2) = {(¬x1, x2), (¬x1, x2)}

Models(∧) = {(¬x1, x2)}Models(x1) = {(x1, x2), (x1, ¬x2)}

Models(∨) = {(x1, x2), (x1, ¬x2), (¬x1, x2)}

Union

Intersection

We can’t store models at every node! We need to store count!

Model Counting in d-DNNF

Model count of a terminal node:
 1. If node is , then Model count is

 2. If node is , then Model count is

 3. If node is a literal, Model count is

0 0

1 2|Vars(F)|

2|Vars(F)−1|

x1

x2

∨

¬x1

∧

Models(¬x1) = {(¬x1, x2), (¬x1, ¬x2)} Models(x2) = {(¬x1, x2), (¬x1, x2)}

Models(∧) = {(¬x1, x2)}Models(x1) = {(x1, x2), (x1, ¬x2)}

Models(∨) = {(x1, x2), (x1, ¬x2), (¬x1, x2)}

ModelCount(¬x1) = 2 ModelCount(x2) = 2

ModelCount(x1) = 2

Model Counting in d-DNNF

Model count of a AND node with children

{c1, c2, …, ck}

x1

x2

∨

¬x1

∧

Models(¬x1) = {(¬x1, x2), (¬x1, ¬x2)} Models(x2) = {(¬x1, x2), (¬x1, x2)}

Models(∧) = {(¬x1, x2)}Models(x1) = {(x1, x2), (x1, ¬x2)}

Models(∨) = {(x1, x2), (x1, ¬x2), (¬x1, x2)}

ModelCount(¬x1) = 2 ModelCount(x2) = 2

ModelCount(x1) = 2

Children don’t share a literal, each child may wrongly
assign these missing literals and thus overcount. Π

i∈[1,k]

ModelCount(ci)
2|Vars(F)−Vars(ci)|

Π
i∈[1,k]

ModelCount(ci)
2|Vars(F)−Vars(ci)|

× 2
|vars(F)− ∪

i∈[1,k]
Vars(ci)|

we need to account for the fact that the
variables that are not assigned in ∧

ModelCount(∧) =
2
2

×
2
2

× 1

Model Counting in d-DNNF

Model Counting in d-DNNF

Model count of a OR node with children

{c1, c2, …, ck}

x1

x2

∨

¬x1

∧

Models(¬x1) = {(¬x1, x2), (¬x1, ¬x2)} Models(x2) = {(¬x1, x2), (¬x1, x2)}

Models(∧) = {(¬x1, x2)}Models(x1) = {(x1, x2), (x1, ¬x2)}

Models(∨) = {(x1, x2), (x1, ¬x2), (¬x1, x2)}

ModelCount(¬x1) = 2 ModelCount(x2) = 2

ModelCount(x1) = 2

Children don’t share modelsΣ
i∈[1,k]

ModelCount(ci)

ModelCount(∧) =
2
2

×
2
2

× 1

ModelCount(∨) = 3

Model Counting in d-DNNF
Model count of a terminal node:
 1. If node is , then Model count is

 2. If node is , then Model count is

 3. If node is a literal, Model count is

0 0

1 2|Vars(F)|

2|Vars(F)−1|

Model count of a AND node with children

{c1, c2, …, ck}

Π
i∈[1,k]

ModelCount(ci)
2|Vars(F)−Vars(ci)|

× 2
|vars(F)− ∪

i∈[1,k]
Vars(ci)|

Model count of a OR node with children

{c1, c2, …, ck}

Σ
i∈[1,k]

ModelCount(ci)

Model Counting in d-DNNF

F = (x1 ∨ x2 ∨ x3)

In order to convert this to d-NNF,
Shannan Expansion:

(x1 ∧ (1 ∨ x2 ∨ x3)) ∨ (¬x1 ∧ (0 ∨ x2 ∨ x3))

F(x1, x2) = F(1,x2) ∨ F(0,x2)

(x1) ∨ (¬x1 ∧ (x2 ∨ x3))

(x1) ∨ (¬x1 ∧ ((x2 ∧ (1 ∨ x3)) ∨ (¬x2 ∧ (0 ∨ x3)))

(x1) ∨ (¬x1 ∧ (x2 ∨ (¬x2 ∧ x3)))

Model Counting in d-DNNF

x1

¬x1

∧

∧

x2

∨

∨

F = (x1 ∨ x2 ∨ x3) ≡ (x1) ∨ (¬x1 ∧ (x2 ∨ (¬x2 ∧ x3)))

x3¬x2

Model Counting in d-DNNF

x1

¬x1

∧

∧

x2

∨

∨

F = (x1 ∨ x2 ∨ x3) ≡ (x1) ∨ (¬x1 ∧ (x2 ∨ (¬x2 ∧ x3)))

x3¬x2
4 4

4

4

4

4
4

×
4
4

× 21

6

4
4

×
6
2

7

Model Counting in d-DNNF

F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

Model Counting in d-DNNF

F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

x1

¬x2

∨

¬x1

∧ x3

x4

∨

¬x3

∧

∧

Model Counting in d-DNNF

F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

x1

¬x2

∨

¬x1

∧ x3

x4

∨

¬x3

∧

∧

ModelCount(¬x1) = 8 ModelCount(¬x2) = 8 8 8

88 4
4

12 12

3 × 3 × 1

Model Counting in d-DNNF

F = (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Shannon Expansion on common variables.

F = x1 ∧ ((1 ∨ x2) ∧ (¬1 ∨ x3))

F = (x1 ∧ x3)

∨ (¬x1 ∧ ((0 ∨ x2) ∧ (¬0 ∨ x3)))

∨ (¬x1 ∧ x2)

CNF/Boolean
Formula d-DNNF formula

Just like ROBDD, may result in
exponential size formula, but
model counting is linear in the
size of the formula

Model Counting in d-DNNF

Tools like d4, c2d, Dsharp for conversion

Efficient model counter, GANAK

By Shubham Sharma, a dual-degree student
from IITK as his MTP project

