## COL:750

#### Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage



https://priyanka-golia.github.io/teaching/COL-750/index.html

## IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness.



## IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness.



T 
$$(a, b, c, a', b', c') = (a' \leftrightarrow b) \land (b' \leftrightarrow c)$$

$$\forall \Box \neg a \lor \neg b \lor \neg a$$

## Bounded vs Unbounded Model Checking

Bounded:

We unroll the transition system up to a fixed depth k.

Is there a counterexample of length  $\leq$  k?

If no counterexample is found, we increase k and repeat.

It only checks for violations up to length k

Output—counterexample

Tools: CBMC, NuSMV

Unbounded:

We still unroll transitions, but with a different purpose: to construct an inductive invariant (proof that holds for all k).

We generalize beyond specific length and reason about all reachable states.

The property is proven inductively.

Output—proof/counterexample

Tools: NuSMV, IC3, PDR

## Reasoning About Code!

Our programming language (little but cute!)

#### Expressions:

E:= 
$$Z \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid ...$$
  $Z = intergers, V = variables$ 

#### Boolean Expressions:

B := T | F | 
$$E_1 = E_2 | E_1 \le E_2 | E_1 < E_2 | \dots$$

#### Commands:

$$C := V = E \mid$$

$$C_1; C_2 \mid$$

$$IF \ B \ Then \ C_1 \ Else \ C_2 \mid$$

$$While \ B \ Do \ C$$

$$x = 17;$$
  $y = 1;$   
 $y = 42;$   $z = 0;$   
 $z = x + y;$   $y = 1;$   
 $z = 0;$   
 $z = z + 1;$   
 $z = z + 1;$   
 $z = z + 1;$   
 $z = z + 1;$ 

### Reasoning About Code!

```
x = 17; 
y = 42; 
z = x + y; 
x = 17 
<math>\{x = 17\}
\{x = 17\}
\{x = 17\} \land (y = 42)\}
\{x = 17\} \land (y = 42) \land (z = 59)\}
```

Forward reasoning

### Reasoning About Code!

$$\begin{cases} y \le 0 \\ x = y \\ x = x + 1 \end{cases}$$

$$\begin{cases} x = y \\ x \le 0 \end{cases}$$

$$x = x + 1$$

$$\begin{cases} x = x + 1 \\ x \le 1 \end{cases}$$
Forward reasoning 
$$\begin{cases} x + 1 > 0 \\ x = y \end{cases}$$

$$\begin{cases} x + 1 > 0 \end{cases}$$

$$x = x + 1$$

$$\begin{cases} x = x + 1 \\ (x > 0) \end{cases}$$
Accepted



Forward Reasoning

## **Hoare Triples**

Partial correctness specification for specifying what a program does:

P is called "Pre-condition"

C is a command

P, Q are conditions on the

Q is called "Post-condition"

program variables used in C

If P holds Trues, and C is executed and terminated, then Q is guaranteed to be True afterwards — If this holds, then  $\{P\}$  C  $\{Q\}$  is a valid Hoare Triple.

$$\{x \neq 0\}$$
  $y = x \times x$   $\{y > 0\}$  Valid Hoare Triple

$$\{x \ge 0\}$$
  $y = 2 \times x \{y > 0\}$  Not a Valid Hoare Triple

#### Hoare Triples — Partial and Total Correctness

What if the code doesn't terminate!

 $\{P\}$  C  $\{Q\}$  is valid under partial correctness if from a instance in P, when C is executed, and if C is terminated, then Q will hold.

 $\{P\}$  C  $\{Q\}$  is valid under total correctness if from instances in P, when C is executed, and C is guaranteed to terminate, and Q will hold.

 $\{x=1\}$  While True Do x=x  $\{y=2\}$  Valid

In partial correctness! the postcondition is trivially satisfied in all terminating executions — of which there are none.

#### Hoare Triples — Partial and Total Correctness

What if the code doesn't terminate!

 $\{P\}$  C  $\{Q\}$  is valid under partial correctness if from a instance in P, when C is executed, and if C is terminated, then Q will hold.

 $\{P\}$  C  $\{Q\}$  is valid under total correctness if from instances in P, when C is executed, and C is guaranteed to terminate, and Q will hold.

Total Correctness = Partial Correctness + Termination!

We will restrict to Partial Correctness

One can show partial correctness and termination separately!

While 
$$x > 1$$
 Do

If  $(x \% 2 = 1)$  Then  $x = 3x + 1$  Else  $x = x/2$ 

Collatz conjecture! No proof that it will terminate

### Our Task! Is to prove the correctness of the code, given their specification.

We had a specification, we wrote a code.

Input, Specification, output {P} C {Q}

From the code, we can construct Pre and Post condition to have a valid Hoare triples! This should represent input, output of the specification.

Want strongest Post condition!

$$\{x \ge 0\}y = 1; z = 2y + x; \{z \ge 0\}$$

$$\{x \ge 0\}y = 1; z = 2y + x; \{z \ge 2\}$$

$$\{x \ge 0\}y = 1; z = 2y + x; \{z \ge x\}$$

$$\{x \ge 0\}y = 1; z = 2y + x; \{z = x + 2\}$$

In some sense (informally), solution space of Q should be as small as possible!

What exactly can happen after running C, assuming the input satisfies P?

#### Our Task! Is to prove the correctness of the code, given their specification.

We had a specification, we wrote a code.

Input, Specification, output {P} C {Q}

From the code, we can construct Pre and Post condition to have a valid Hoare triples! This should represent input, output of the specification.

Want weakest pre condition!

$${x \ge 6}x = x + 1{x > 5}$$

$${x = 10}x = x + 1{x > 5}$$

$${x \ge 5}x = x + 1{x > 5}$$

least restrictive condition that still guarantees that after executing C, the postcondition Q holds.

It's the most general condition that guarantees Q holds after executing the statement.

In some sense (informally), solution space of P should be as big as possible!

## Floyd - Hoare Logic

A deductive proof system for Hoare triples Proof system by Hoare and "some" underlying ideas by Floyd

Deductive proof system — derive conclusion from premises using a set of rules and axioms

To prove/disprove that a Hoare Triple is valid

A proof in Floyd-Hoare logic is a sequence of lines, each of which is either an axiom of the logic or follows from earlier lines by a rule of inference of the logic

## Floyd - Hoare Logic Assignment Axiom

Assignment Axiom:

$${Q[x = E]} x = E; {Q}$$

With respect to Post condition!

$$\{y+1>0\} \quad Q[x=y]$$

$$x = y$$

$$\{x+1>0\} \quad Q[x=x+1]$$

$$x = x+1$$

$$\{(x>0)\}$$

Backward reasoning

$$\{x = 2\}$$
  $Q[x = x + 1]$   
 $x = x + 1$   
 $\{(x = 3)\}$ 

## Floyd - Hoare Logic

#### Sequence Rule

$$\{P\}C_1\{R\},\{R\}C_2\{Q\}$$
 Premises  $\{P\}C_1,C_2\{Q\}$  Conclusion

$$\{y+1 \ge 0\}x = y\{x+1 \ge 0\}, \{x+1 \ge 0\}x = x+1; \{x > 0\}$$

$$\{y+1 \ge 0\}x = y; x = x+1; \{x > 0\}$$

$${True} x = 5{x = 5}, {x = 5}y = 2 \times x; {y = 10}$$
  
 ${True} x = 5; y = 2 \times ; {y = 10}$ 

# Floyd - Hoare Logic Conditional Rule

$$\{P \land B\}C_1\{Q\}, \{P \land \neg B\}C_2\{Q\}\}$$
  
 $\{P\} if \ B \ then \ C_1 \ else \ C_2 \ \{Q\}$ 

$${True \land (x > 0)}y = 1{y = 1 \lor y = 2}, {True \land (x \le 0)}y = 2{y = 2}$$
  
 ${True}if x > 0 then y = 1 else y = 2 {y = 1 \lor y = 2}$ 

## Floyd - Hoare Logic

#### While Rule

- Loop Invariants (I)
  - It should hold before the loop starts.
  - If it holds before the an iterations, and loop guard (B) is True, it must hold after executing the body C.
  - If the loop terminates,  $I \wedge \neg B$  holds

#### And, should be strong to imply the post condition

while 
$$x > 0$$
 do 
$$sum = 0; i = 1;$$
 
$$I = sum \ge 0$$
 
$$x = x - 1$$
 
$$I = x \ge 0$$
 while  $i \le n$  do 
$$I = (1 \le i \le n) \land (sum = \sum_{j=1}^{i-1} j)$$
 
$$sum = sum + i; i = i + 1$$

# Floyd - Hoare Logic While Rule

$$\{I \land B\}C\{I\}$$

$$\{I\} \ While \ B \ do \ C\{I \land \neg B\}$$

If executing C once preserve the truth of I, then executing C a number of times also preserve the truth of I

while 
$$x > 0$$
 do  $\{x \ge 0\} \land (x > 0)\} x = x - 1 \{x \ge 0\}$   
 $x = x - 1$   $\{x \ge 0\} \text{ While } x > 0 \text{ do } x = x - 1 \{x \ge 0 \land \neg B\}$ 

## Floyd - Hoare Logic

### Consequence Rule

$$P' \to P \quad \{P\}C\{Q\} \quad Q \to Q'$$

$$\{P'\}C\{Q'\}$$

$$\{x = 2\}x = x + 1\{x = 3\} \ (x = 3) \to (x \ge 3)$$
$$\{x = 2\}x = x + 1\{x \ge 3\}$$

$$(x = 0) \to (x \ge 0) \{x \ge 0\} x = x + 1\{x > 1\}$$
$$\{x = 0\} x = x + 1\{x \ge 1\}$$

$$z = x$$
;  $z = z + y$ 

To prove/disprove 
$$\{True\}\ z = x\ ;\ z = z + y\ \{z = x + y\}$$

$$\{True\}$$

$$z = x$$

$$\{z = x\}$$

$$z = z + y$$

$$\{z = x + y\}$$

Compute precondition using Assignment Axiom:

$${Q[x = E]} x = E; {Q}$$

$$x + y = z + y \quad x = x$$
Sequence Rule 
$$\{P\}C_1\{R\}, \{R\}C_2\{Q\}\}$$

$$\{P\}C_1, C_2\{Q\}$$

$$\{True\}\ z = x \ ; \ z = z + y \ \{z = x + y\}$$

$$\{True\}\ Prog\ \{y=x+1\}$$

$$a = x + 1;$$

$$if(a - 1 = 0)$$

$$y = 1;$$

$$else$$

$$y = a;$$

```
\{True\}\ Prog\ \{y = x + 1\}
 { True }
  (x = 0) \rightarrow x = 0) \land (\neg(x = 0) \rightarrow x + 1 = x + 1)
  a = x + 1;
  ((a-1==0) \rightarrow x=0) \land (\neg (a-1==0) \rightarrow a=x+1)
 if(a-1=0)
        \{1 = x + 1\}
                                           Conditional Rule \frac{\{P \land B\}C_1\{Q\}, \{P \land \neg B\}C_2\{Q\}\}}{\{P\} \textit{if B then } C_1 \textit{ else } C_2\{Q\}}
         y = 1;
        \{y = x + 1\}
        {a = x + 1}
                                              Assignment Axiom
         y = a;
        \{y = x + 1\}
{y = x + 1}
```

```
\{n \ge 0\} \ prog \{fact = n!\}
i = 1
fact = 1
while \ i \le n \ do
fact = fact \times i
i = i + 1
```

```
Toy Examples:
                                          \{n \geq 0\} prog \{fact = n!\}
 \{(0 \le n)\}
                                                                                                 \{I \wedge B\}C\{I\}
 \{(1 \le n+1) \land (1 = (1-1)!)\}
                                                                While Rule
                                                                                      \{I\} While B do C\{I \land \neg B\}
  i = 1
 \{(1 \le i \le n+1) \land (1 = (i-1)!)\}
 fact = 1
                                                                     I = (1 \le i \le n + 1) \land (fact = (i - 1)!)
  \{(1 \le i \le n+1) \land (fact = (i-1)!)\}
  while i \leq n do
                                                               We want \{I \land B\}C\{I\}
Using Consequence Rule \frac{P' \to P \ \{P\}C\{Q\}}{\{P'\}C\{Q\}}
        \{(1 \le i \le n+1) \land (fact = (i-1)!)\} \land \{i \le n\}
        \{(1 \le i \le n) \land (fact \times i = i \times (i-1)!)\}
         fact = fact \times i
          \{(1 \le i \le n) \land (fact = (i)!)\}
          i = i + 1
          \{(1 \le i \le n+1) \land (fact = (i-1)!)\}
  \{(1 \le i \le n+1) \land (fact = (i-1)!)\} \land \{i > n\}
  \{fact = n!\}
```

$$True \} prog \{y = x!\}$$

$$y = 1$$

$$z = 0$$

$$while z! = x do$$

$$z = z + 1$$

$$y = y \times z$$

Assuming input to this program is x.

i = i + 1

$$\{n \geq 0\} \ prog \ \{sum = \sum_{i=1}^{n} i\}$$
 
$$sum = 0$$
 
$$i = 1$$
 
$$while \ i \leq n \ do$$
 
$$sum = sum + i$$

Assuming input to this program is n.