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IC3 : Incremental Construction of Inductive Clauses 
for Indubitable Correctness.



IC3 : Incremental Construction of Inductive Clauses 
for Indubitable Correctness.

T (  = (a, b, c, a′￼, b′￼, c′￼) a′￼ ↔ b) ∧ (b′￼ ↔ c) ∀ □ ¬a ∨ ¬b ∨ ¬c



Bounded vs Unbounded Model Checking

Bounded: 
 
We unroll the transition system up to a 
fixed depth k. 

Is there a counterexample of length ≤ k? 

If no counterexample is found, we increase 
k and repeat. 

It only checks for violations up to length k 

Unbounded: 
 
We still unroll transitions, but with a different 
purpose: to construct an inductive invariant 
(proof that holds for all k). 

We generalize beyond specific length and 
reason about all reachable states. 

The property is proven inductively. 

 
Output— counterexample Output— proof/ counterexample

Tools: CBMC, NuSMV Tools:  NuSMV, IC3, PDR



Reasoning About Code!
Our programming language (little but cute!)

Expressions: 
    E:=  Z | V | E1 + E2 |E1 − E2 |E1 × E2 |… Z = intergers, V  = variables

Boolean Expressions: 
     B := T | F | E1 = E2 |E1 ≤ E2 |E1 < E2 |…

Commands: 
       
                  | 
                  | 
                 While 

C := V = E |
C1; C2
IF B Then C1 Else C2

B Do C

; 
; 

 

x = 17
y = 42
z = x + y;

 
 

 
     
    

y = 1;
z = 0;
While(z! = x)do

z = z + 1;
y = y * z;



; 
; 

 

x = 17
y = 42
z = x + y;

Reasoning About Code!

 
 

 
 

 
 

{True}
x = 17
{x = 17}
y = 42
{(x = 17) ∧ (y = 42)}
z = x + y
{(x = 17) ∧ (y = 42) ∧ (z = 59)}

Forward reasoning



 
 x = y

x = x + 1

Reasoning About Code!

 x = x + 1
{(x > 0)}

Backward reasoning{x + 1 > 0}
x = y

{y + 1 > 0}

x = x + 1
{x ≤ 0}
x = y

{y ≤ 0}

Forward 
reasoning

{x ≤ 1}

Forward Reasoningy ≤ 0 x ≤ 1

Action of the 
program

{Accepted 
initial state

Accepted 
final state



Hoare Triples

Partial correctness specification for specifying what a program does:

{P} C {Q}

 is a command 
P, Q are conditions on the 
program variables used in C

CP is called “Pre-condition” 
C is code 
Q is called “Post-condition”

If  holds Trues, and C is executed and terminated, then Q is guaranteed to be True  
afterwards  — If this holds, then {P} C {Q} is a valid Hoare Triple.

P

{x ≠ 0} y = x × x {y > 0} Valid Hoare Triple

{x ≥ 0} y = 2 × x {y > 0} Not a Valid Hoare Triple



Hoare  Triples — Partial and Total Correctness

What if the code doesn’t terminate!

 is valid under partial correctness if from a instance in P, when  is 
executed, and if  is terminated, then  will hold.
{P} C {Q} C

C Q

 is valid under total  correctness if from instances in P, when  is executed, 
and  is guaranteed to terminate, and   will hold.
{P} C {Q} C

C Q

{x = 1} While True Do x = x {y = 2} Valid
In partial correctness! 
the postcondition is trivially satisfied in 
all terminating executions — of which 
there are none.



Hoare  Triples — Partial and Total Correctness

What if the code doesn’t terminate!

 is valid under partial correctness if from a instance in P, when  is 
executed, and if  is terminated, then  will hold.
{P} C {Q} C

C Q

 is valid under total  correctness if from instances in P, when  is executed, 
and  is guaranteed to terminate, and   will hold.
{P} C {Q} C

C Q

Total Correctness = Partial Correctness + Termination! 

One can show partial correctness and termination separately!

Termination  
        
While x > 1 Do

If(x % 2 = = 1) Then x = 3x + 1 Else x = x/2

Collatz conjecture! 
No proof that it will 
terminate

We will restrict to  
Partial Correctness



Our Task!

We had a specification, we wrote a code.  

Input, Specification, output {P} C {Q} From the code, we can construct Pre and Post  
condition to have a valid Hoare triples! 
This should represent input, output of the 
specification. 

Want strongest Post condition!

Is to prove the correctness of the code, given their specification. 

{x ≥ 0}y = 1; z = 2y + x; {z ≥ 0}

{x ≥ 0}y = 1; z = 2y + x; {z ≥ 2}

{x ≥ 0}y = 1; z = 2y + x; {z ≥ x}

{x ≥ 0}y = 1; z = 2y + x; {z = = x + 2}

In some sense (informally), 
solution space of Q should be as 
small as possible!

What exactly can happen after running 
C, assuming the input satisfies P?



Our Task!

We had a specification, we wrote a code.  

Input, Specification, output {P} C {Q} From the code, we can construct Pre and Post  
condition to have a valid Hoare triples! 
This should represent input, output of the 
specification. 

Want  weakest pre condition!

Is to prove the correctness of the code, given their specification. 

{x ≥ 6}x = x + 1{x > 5}

{x = = 10}x = x + 1{x > 5}

{x ≥ 5}x = x + 1{x > 5} In some sense (informally), 
solution space of P should be as 
big as possible!

least restrictive condition that still 
guarantees that after executing C, the 
postcondition Q holds.

It’s the most general condition that guarantees  
Q holds after executing the statement.



Floyd - Hoare Logic A deductive proof system for Hoare triples
Proof system by Hoare and “some” underlying ideas by Floyd 

Deductive proof system — derive conclusion from premises using a set of rules and axioms

To prove/disprove that a Hoare Triple is valid 

A proof in Floyd-Hoare logic is a sequence of lines, each 
of which is either an axiom of the logic or follows from 
earlier lines by a rule of inference of the logic



Floyd - Hoare Logic Assignment Axiom

Assignment Axiom: 
            {Q[x = E]} x = E; {Q}

 x = x + 1
{(x > 0)}

Backward reasoning{x + 1 > 0}
x = y

{y + 1 > 0}

Q[x = x + 1]

Q[x = y]

 x = x + 1
{(x = 3)}

{x = 2} Q[x = x + 1]

With respect to Post condition!



Floyd - Hoare Logic

Sequence  Rule
{P}C1{R}, {R}C2{Q}

{P}C1, C2{Q}

{y + 1 ≥ 0}x = y; x = x + 1; {x > 0}

{y + 1 ≥ 0}x = y{x + 1 ≥ 0}, {x + 1 ≥ 0}x = x + 1; {x > 0}

{True}x = 5; y = 2 × ; {y = 10}

{True}x = 5{x = = 5}, {x = = 5}y = 2 × x; {y = 10}

Premises

Conclusion



Floyd - Hoare Logic
Conditional Rule

{P ∧ B}C1{Q}, {P ∧ ¬B}C2{Q}
{P}if B then C1 else C2 {Q}

{True}if x > 0 then y = 1 else y = 2 {y = 1 ∨ y = 2}

{True ∧ (x > 0)}y = 1{y = 1 ∨ y = 2}, {True ∧ (x ≤ 0)}y = 2{y = 2}



Floyd - Hoare Logic
While Rule
• Loop Invariants (I) — 

• It should hold before the loop starts.  

• If it holds before the an iterations, and loop guard (B) is True, it must 
hold after executing the body C. 

• If the loop terminates,  holds I ∧ ¬B

while  do 

    

x > 0

x = x − 1 I = x ≥ 0
;  ; 

while  do 

   ;  

sum = 0 i = 1

i ≤ n

sum = sum + i i = i + 1

I = sum ≥ 0

And, should be strong to imply the post condition 

I = (1 ≤ i ≤ n) ∧ (sum =
i−1
Σ

j=1
j)



Floyd - Hoare Logic
While Rule

{I ∧ B}C{I}
{I} While B do C{I ∧ ¬B}

while  do 

    

x > 0

x = x − 1

{x ≥ 0) ∧ (x > 0)}x = x − 1{x ≥ 0}

{x ≥ 0} While x > 0 do x = x − 1 {x ≥ 0 ∧ ¬B}

If executing  once preserve the  
truth of , then executing  a number of times also 

preserve the truth of 

C
I C

I



Floyd - Hoare Logic

Consequence Rule
P′￼ → P {P}C{Q} Q → Q′￼

{P′￼}C{Q′￼}

{x = 2}x = x + 1{x = 3} (x = 3) → (x ≥ 3)

{x = 2}x = x + 1{x ≥ 3}

(x = 0) → (x ≥ 0) {x ≥ 0}x = x + 1{x > 1}

{x = 0}x = x + 1{x ≥ 1}



Toy Examples:

z = x ; z = z + y

To prove/disprove {True} z = x ; z = z + y {z = x + y}

 
 z = z + y

{z = x + y}

Compute precondition using
z = x

Assignment Axiom: 
            {Q[x = E]} x = E; {Q}

x + y = z + y{z = x} x = x

{True}

Sequence  Rule {P}C1{R}, {R}C2{Q}
{P}C1, C2{Q}

{True} z = x ; z = z + y {z = x + y}



a = x + 1;

if(a − 1 = = 0)
y = 1;

else
y = a;

Toy Examples:

{True} Prog {y = x + 1}



a = x + 1;

if(a − 1 = = 0)

y = 1;

else

y = a;

Toy Examples:
{True} Prog {y = x + 1}

{y = x + 1}

Conditional Rule
{P ∧ B}C1{Q}, {P ∧ ¬B}C2{Q}

{P}if B then C1 else C2 {Q}

{y = x + 1}

{y = x + 1}

Assignment Axiom{a = x + 1}

{1 = x + 1}

((a − 1 = = 0) → x = 0) ∧ (¬(a − 1 = = 0) → a = x + 1)

(x = = 0) → x = 0) ∧ (¬(x = = 0) → x + 1 = x + 1)
{True}



Toy Examples:

i = 1

fact = 1
while i ≤ n do

fact = fact × i
i = i + 1

{n ≥ 0} prog {fact = n!}



Toy Examples:

i = 1

fact = 1

while i ≤ n do

fact = fact × i

i = i + 1

{n ≥ 0} prog {fact = n!}
{I ∧ B}C{I}

{I} While B do C{I ∧ ¬B}While Rule

I = (1 ≤ i ≤ n + 1) ∧ ( fact = (i − 1)!)

{(1 ≤ i ≤ n + 1) ∧ ( fact = (i − 1)!)} ∧ { i > n}

{fact = n!}

{(1 ≤ i ≤ n + 1) ∧ ( fact = (i − 1)!)}

{(1 ≤ i ≤ n) ∧ ( fact = (i)!)}

{(1 ≤ i ≤ n) ∧ ( fact × i = i × (i − 1)!)}

{(1 ≤ i ≤ n + 1) ∧ ( fact = (i − 1)!)} ∧ {i ≤ n}

{(1 ≤ i ≤ n + 1) ∧ ( fact = (i − 1)!)}

{(1 ≤ i ≤ n + 1) ∧ (1 = (i − 1)!)}

{(1 ≤ n + 1) ∧ (1 = (1 − 1)!)}

{(0 ≤ n)}

We want {I ∧ B}C{I}

Using Consequence Rule  
P′￼ → P {P}C{Q}

{P′￼}C{Q}



Toy Examples:

y = 1

z = 0
while z! = x do

z = z + 1
y = y × z

{True} prog {y = x!}

Assuming input to this program is x.



Toy Examples:

sum = 0
i = 1
while i ≤ n do

sum = sum + i
i = i + 1

{n ≥ 0} prog {sum =
n

Σ i
i=1

}

Assuming input to this program is n.


