COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https:/priyanka-golia.github.io/teaching/COL-750/index.html

IC3 : Incremental Construction of Inductive Clauses
for Indubitable Correctness.

?&K% Forw a+d e Eloclcﬁv

/GJ) possiable

K . Bad
o///_sj’ / 7/
Foo -

?

S

F

Back L5 A vl Seayz///u? (e X
Bloc\t?"lg staten

IC3 : Incremental Construction of Inductive Clauses
for Indubitable Correctness.

'7C(,’7b/L 7qtb/c

&) 2
\@/ /\/ cbec

CLc'Ib/'ZC ch['7C

T(a,b,c,a’,b',c)=(a < b) A (b < ¢) V[1-aVv bV -c

Bounded vs Unbounded Model Checking

Bounded: Unbounded:
We unroll the transition system up to a We still unroll transitions, but with a different
fixed depth k. purpose: to construct an inductive invariant

[s there a counterexample of length < k? (proof that holds for all k).

We generalize beyond specific length and

[f no counterexample is found, we increase
reason about all reachable states.

k and repeat.

[t only checks for violations up to length k The property is proven inductively.

Output— counterexample Output— proof/ counterexample

Tools: CBMC, NuSMV Tools: NuSMV, IC3, PDR

Reasoning About Code!
Our programming language (little but cute!)

Expressions:
E= Z|VI|E,+E,|E, — E,|E, XE,| ... 7 = intergers, V = variables

Boolean Expressions: =17 y=1;
Commands: Z=Xx+Yy; While(z! = x)do
C:=V=E] z=z+1
— X ~o
Cl; Cz ‘ y=Y 4%

IF B Then C, Else C, |
While B Do C

Reasoning About Code!

{True}
x=17;
492 x =17 Forward reasoning
Y= Ix=17)
e R Y.
{x=17)A(y=42)]
I=XTY

{x=1TDHAQHY=42)A(z=39)} *

Reasoning About Code!

X = P
Y Forward 1 > 0! | Backward reasonin
X=y x <0} reasoning et 1> 0])
x:X+1 X:X‘|‘1 X=X+1
{)C < 1} {(X > O)}
Accepted Accepted
initial state final state
by <0 { Forward Reasoning

Action of the
program

Hoare Triples

' correctnessspeciﬁcation for specifying what a program does:

P} C {0}
P is called “Pre-condition” Cis a command
C is code P, Q are conditions on the
Q is called “Post-condition” program variables used in C

If P holds Trues, and C is executed and terminated, then Q is guaranteed to be True
afterwards — If this holds, then {P} C {Q} is a valid Hoare Triple.

Ix#£0}y=xXxx{y>0) Valid Hoare Triple

Ix>0}y=2Xxx{y>0} Nota Valid Hoare Triple

Hoare Triples — Partial and Total Correctness

What if the code doesn’t terminate!

{P} C {0} is valid under partial correctness if from a instance in P, when C'is

executed, and if C'is terminated, then O will hold.

{P} C {Q} isvalid under total correctness if from instances in P, when C is executed,

and C is guaranteed to terminate, and Q will hold.

In partial correctness!

x =1} While True Do x = x {y =2} Valid the postcondition is trivially satisfied in
all terminating executions — of which
there are none.

Hoare Triples — Partial and Total Correctness

What if the code doesn’t terminate!

{P} C {0} is valid under partial correctness if from a instance in P, when C'is
executed, and if C is terminated, then O will hold.

{P} C {0} isvalid under total correctness if from instances in P, when C is executed,
and C'is guaranteed to terminate, and Q will hold.

i} , SN
Total Correctness = Partial Correctness + Termination! We will restrict to

Partial Correctness
One can show partial correctness and termination separately!

Termination Collatz conjecture!

While x > 1 Do L
No proof that it will
If(x%2==1)Then x =3x+ 1 Else x =x/2 : q

Our Task! Isto prove the correctness of the code, given their specification.

We had a specification, we wrote a code.

Input, Specification, output {P} C {Q} From the code, we can construct Pre and Post
condition to have a valid Hoare triples!
This should represent input, output of the
specification.

Want strongest Post condition! _
In some sense (informally),

{x>0}y=1;z=2y+x;{z>0} solution space of Q should be as

small as possible!
ix20ly=Lz=2y+x;{z 22}

(x>0ly=1:z2=2y+x;{z>x) What exactly can happen after running
- B C, assuming the input satisfies P?
x>0ly=1,z=2y+x;{z==x+2}

Our Task! Isto prove the correctness of the code, given their specification.

We had a specification, we wrote a code.

From the code, we can construct Pre and Post
condition to have a valid Hoare triples!

This should represent input, output of the
specification.

Input, Specification, output {P} C {Q}

Want weakest pre condition! o o ,
least restrictive condition that still

(x>6lx=x+1{x> 5} guarantees that after executing C, the

postcondition Q holds.

{X — = IO}X = X+ 1{)6 > 5} It's the most general condition that guarantees
Q holds after executing the statement.

{(x23jx=x+ 1{x > 5} In some sense (informally),

solution space of P should be as
big as possible!

A deductive proof system for Hoare triples

Floyd - Hoare Logic

Proof system by Hoare and “some” underlying ideas by Floyd

Deductive proof system — derive conclusion from premises using a set of rules and axioms
To prove/disprove that a Hoare Triple is valid

A proof in Floyd-Hoare logic is a sequence of lines, each
of which is either an axiom of the logic or follows from
earlier lines by a rule of inference of the logic

Floyd - Hoare Logic Assignment Axiom

Assignment Axiom:

{Olx=E]} x=E; {0}

wH1>07 Qlx=y]

X=Yy
Ix+1>0} Olx=x+ 1]

x=x+1
(x> 0)}

Backward reasoning

With respect to Post condition!

X =2

x=x+1
(x=3)}

Olx =x+ 1]}

Floyd - Hoare Logic

Sequence Rule |
{PYC\{R},{R}C,{Q} Premises

L1, G0} Conclusion

v+12>20}lx=y{x+1>20},{x+1>20}x=x+1;{x>0}

ly+1>0lx=y;x=x+1;{x> 0}

{True}x =35{x==5},{x==5}y=2Xx;{y =10}

{Truelx =35;y=2X;{y =10}

Floyd - Hoare Logic

Conditional Rule
{PAB}C{O},{PA-B}(G{0]}
{P}if B then C, else C, {Q}

{True A(x>0)}y=1{y=1vy=2},{TrueN(x <0)}y=2{y =2}

{Truelif x> 0theny=1elsey=2{y=1vy=2}

Floyd - Hoare Logic
While Rule

* Loop Invariants (I) —
* It should hold before the loop starts.

* If it holds before the an iterations, and loop guard (B) is True, it must
hold after executing the body C.

* If the loop terminates, I A =B holds
And, should be strong to imply the post condition

while x > 0 do sum=0; i = 1; I =sum >0

1—1
I=x>0 whilei <ndo I=(1<i<n)A(um= X))
j=1

x=x—1

sum=sum-+1i;i =1+ 1

Floyd - Hoare Logic

While Rule
If executing C once preserve the
{I A B}C{I} truth of I, then executing C a number of times also
{1} While B do C{I A "B} oreserve the truth of [
while x > 0 do XZ2OAX>0)ix=x—1{x 2 0j

x=x—1 x>0} Whilex>0dox=x—-1{x>0A-B}

Floyd - Hoare Logic

Consequence Rule

P — P (P;C1Q) Q-0
PrCLo’

x=2lx=x+1{x=3}](x=3) - (x > 3)

Ix=2lx=x+ 1{x > 3}

x=0)->x>20) {x>20}lx=x+1{x>1}

Ix=0lx=x+1{x>1}

Toy Examples:

I=X;,27=2+Y

To prove/disprove {True} z=x;, z=z+y{z=x+Yy}

Compute precondition using Assignment Axiom:
7=X {0lx=E]} x=E; {Q}
X+ty=2Z+y X=X
Sequence Rule {P}CH{R}L{R} {0
P1CL GO}

{(True} z=x; z=z+y{z=x+y]}

Toy Examples:

a=x+1;
ifla—1==0)

y=1;
else
y=4d,

{True} Prog {y=x+ 1}

Toy Examples:
{True} Prog {y=x+1}

a=x++1;
ifla—1==0)

y = 1; Conditional Rul {PAB}YC{Q},{P A-B}G{Q]}
l onditional Rule b1t B then C, else C, {Q)
eLSe

Assignment Axiom

Toy Examples:
{n >0} prog {fact =n!}
=1
fact =1

while 1 < n do

fact = fact X i
=1+ 1

Toy Examples: {n >0} prog {fact =n!)

A (I ABYC{I)
=1 While Rule “n"While B do C{I A —B)
fact =1 =1 <i<n+DA(fact= (G- 1))

while i < n do
A i < n) > We want {/ A B}C{I}

. P'— P {P;C{0}
, Using Consequence Rule —————
fact = fact X i [PYC{O)

=1+ 1

AN{i>n}

Toy Examples:

{True} prog {y = x!}
y=1
z=0
while 7! = x do

z=2z+1
y=yXZ?

Assuming input to this program is x.

Toy Examples:

{in >0} prog {sum = Zn 1}
i=1

sum = 0
1 =1
while 1 < n do

sum = sum + 1
=1+ 1

Assuming input to this program is n.

