COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Boolean ——> SAT Solvers /propositional formulas

If formula is SAT is fiable, gives an satisfying assignment

Equisatisfiable Formulas (modified)

Boolean (propositional) formulas F and C $Vars(G) \subseteq Vars(F)$

- Every satisfying assignment of G can be extended to the satisfying assignment of F.
 - For every $\tau \models G$, there is a τ' such that τ' extends τ to Vars(F/G), and $\tau' \models F$
- Every satisfying assignment of F can be projected on *Vars*(*G*) to get the satisfying assignment of G.
 - For every $\tau' \models F$, there is a τ such that $\tau = \tau'_{\downarrow Vars(G)}$ and $\tau \models G$

Boolean (propositional) formulas F and G are equisatisfiable if the following holds:

Equisatisfiable Formulas (modified)

$$F = (p \lor \alpha) \land (\neg p \lor \beta) \quad \text{and} \quad G = (\alpha \lor \beta)$$

 $Models(F)_{\downarrow Vars(G)} := \{ (\alpha \mapsto 0, \beta \mapsto 1), (\alpha \mapsto 1, \beta \mapsto 1), (\alpha \mapsto 1, \beta \mapsto 0) \}$

 $Models(F)_{\downarrow Vars(G)} := Models(G)$

For every $\tau \models G$, there is a τ' such that τ' extends τ to Vars(F/G), and $\tau' \models F$ For every $\tau' \models F$, there is a τ such that $\tau = \tau'_{\downarrow Vars(G)}$ and $\tau \models G$

$\vee \beta$)

- $Models(F) := \{ (p \mapsto 1, \alpha \mapsto 0, \beta \mapsto 1), (p \mapsto 1, \alpha \mapsto 1, \beta \mapsto 1), (p \mapsto 0, \alpha \mapsto 1, \beta \mapsto 0), (p \mapsto 0, \alpha \mapsto 1, \beta \mapsto 1) \}$

Equisatisfiable Formulas (modified)

$$G = p \lor (q \land r) \qquad \text{Is F and} \qquad$$

$$F = (p \lor t) \land (t \leftrightarrow q \land r) \qquad \text{Is F' and} \qquad$$

$$F' = (p \lor t) \land (t \to q \land r)$$

Exercise:

$$G = (x_1 \land y_1) \lor (x_2 \land y_2)$$

F = $(t_1 \lor t_2) \land (t_1 \leftrightarrow (x_1 \land y_1) \land (t_2 \leftrightarrow (x_2 \land y_2))$
F' = $(t_1 \lor t_2) \land (t_1 \rightarrow (x_1 \land y_1) \land (t_2 \rightarrow (x_2 \land y_2))$

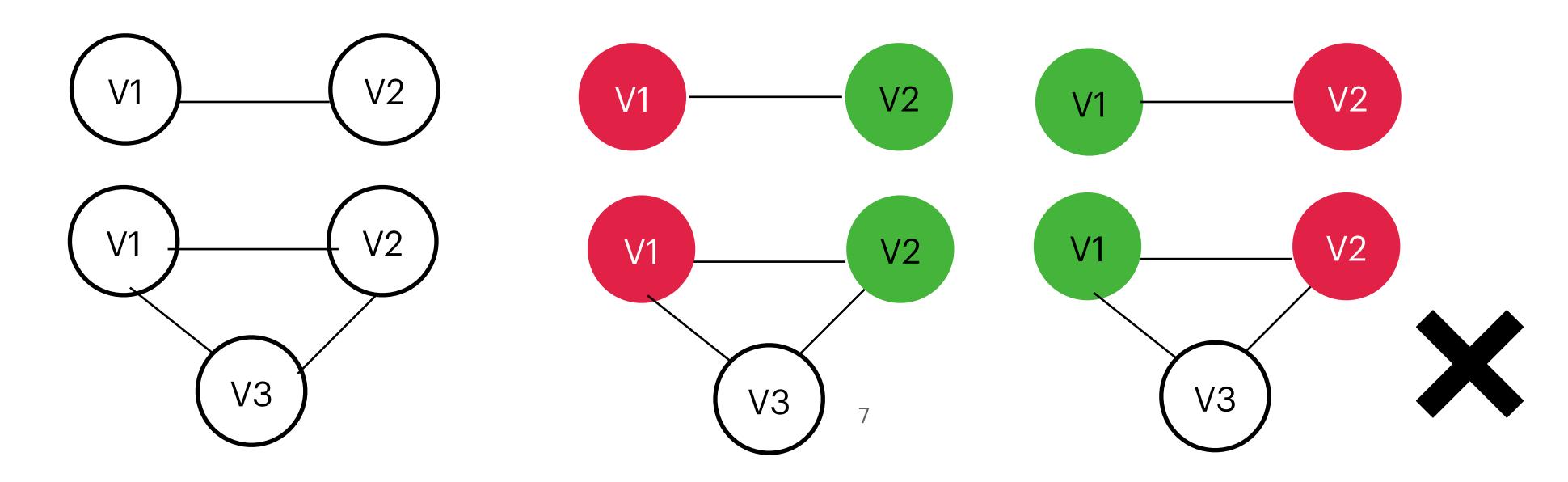
- d G equisatisfiable?
- d G equisatisfiable?

Is F and G equisatisfiable? $(x y_2)$ Is F' and G equisatisfiable? $(x y_2)$

Constraint Encoding

Encoding of Graph Coloring to SAT

- two adjacent vertices have same color.
- K-color: A proper coloring involving a total of K colors.
- Is the following graphs 2-colorable?



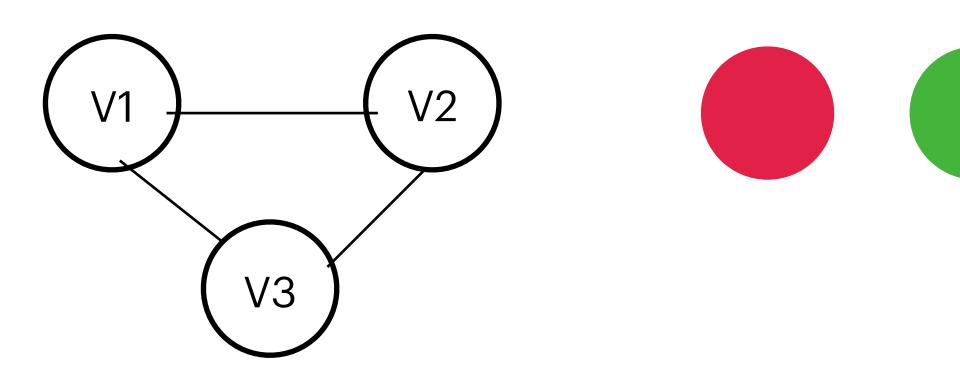
• Proper coloring: An assignment of colors to the vertices of a graph such that no

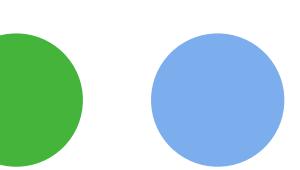
Encoding of Graph Coloring to SAT

Given a graph G(V,E) with V as a set of vertices and E as a set of edges, and an integer K (representing the number of colors), can we encode the proper graph coloring into a CNF formula such that the formula is satisfiable (SAT) if and only if the graph is Kcolorable.

We want to encode that:

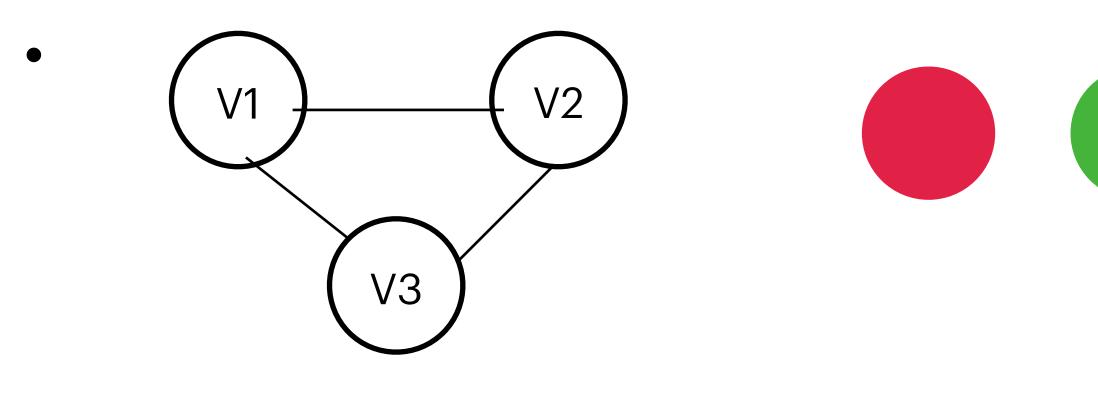
- No two adjacent vertices share the same color.
- Each vertex has exactly one color.





Step 1: Propositional Variables

- Use propositional variables $v_{i,g}$, where $i \in \{1,2,3\}, g \in \{R, G, B\}$
- $v_{i,g}$ is True, if and only if, vertex *i* is assigned *g* color.



 $v_{1,G}, v_{1,R}, v_{1,B}$ $v_{2,G}, v_{2,R}, v_{2,B}$

re $i \in \{1,2,3\}, g \in \{R,G,B\}$ signed g color.



 $v_{3,G}, v_{3,R}, v_{3,B}$

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

one color

How are we going to encode, each vertex must have at least one color:

For vertex V_1 : $v_{1,G} \lor v_{1,R} \lor v_{1,B}$

How are we going to encode, each vertex must have at most one color:

$$\begin{split} V_1 : (\neg v_{1,G} \lor \neg v_{1,R}) \land & V_2 : (\neg v_{2,G} \lor \neg v_{2,R}) \land & V_3 : (\neg v_{3,G} \lor \neg v_{3,R}) \land \\ (\neg v_{1,G} \lor \neg v_{1,B}) \land & (\neg v_{2,G} \lor \neg v_{2,B}) \land & (\neg v_{3,G} \lor \neg v_{3,B}) \land \\ (\neg v_{1,R} \lor \neg v_{1,B}) \land & (\neg v_{2,R} \lor \neg v_{2,B}) \land & (\neg v_{3,R} \lor \neg v_{3,B}) \land \end{split}$$

• Each vertex must have at least one color, and each vertex must have at most

$$V_2: v_{2,G} \lor v_{2,R} \lor v_{2,B} \qquad V_3: v_{3,G} \lor v_{3,R} \lor v_{3,R}$$

Step 2: Encoding Constraints

• No two adjacent vertex have the same color.

For
$$V_1$$
 and V_2 : For V_1
 $(\neg v_{1,R} \lor \neg v_{2,R}) \land (\neg v_{1,R}$
 $(\neg v_{1,G} \lor \neg v_{2,G}) \land (\neg v_{1,G}$
 $(\neg v_{1,B} \lor \neg v_{2,B}) \land (\neg v_{1,B}$

- and V_3 : For V_2 and V_3 : $_{R} \lor \neg v_{3.R}) \land \qquad (\neg v_{2.R} \lor \neg v_{3,R}) \land$ $_{G} \lor \neg v_{3,G}) \land \qquad (\neg v_{2,G} \lor \neg v_{3,G}) \land$ $_{B} \lor \neg v_{3.B}) \land \qquad (\neg v_{2.B} \lor \neg v_{3,B})$

Proper Coloring to SAT

$$(v_{1,G} \lor v_{1,R} \lor v_{1,B}) \land (v_{2,G} \lor v_{2,R} \lor v_{2,B}) \land (v_{3,G} \lor v_{3,R} \lor v_{3,B}) \land (\neg v_{1,G} \lor \neg v_{1,B}) \land (\neg v_{1,G} \lor \neg v_{1,B}) \land (\neg v_{1,R} \lor \neg v_{1,B}) \land (\neg v_{1,G} \lor \neg v_{1,B}) \land (\neg v_{1,G} \lor \neg v_{2,B}) \land (\neg v_{2,R} \lor \neg v_{2,B}) \land (\neg v_{2,G} \lor \neg v_{2,B}) \land (\neg v_{3,R} \lor \neg v_{3,B}) \land (\neg v_{3,R} \lor \neg v_{3,B}) \land (\neg v_{1,R} \lor \neg v_{2,R}) \land (\neg v_{1,R} \lor \neg v_{2,R}) \land (\neg v_{1,G} \lor \neg v_{2,G}) \land (\neg v_{1,B} \lor \neg v_{2,B}) \land (\neg v_{1,R} \lor \neg v_{3,R}) \land (\neg v_{1,G} \lor \neg v_{3,G}) \land (\neg v_{1,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,G} \lor \neg v_{3,G}) \land (\neg v_{2,B} \lor \neg v_{3,B}) \land (\neg v_{2,R} \lor \neg v_{3,R}) \land (\neg v_{2,R} \lor \neg v_{3,R})$$

Encoding of Pigeon Hole Principle to SAT

Theorem: If we place n+1 pigeons in n holes then there is a hole with at least 2 pigeons

Thm is true for any n; can we prove it for a fixed n using SAT solvers?

Exercise:

Encode Pigeon hole principle to a CNF formula for 3 pigeons and 2 holes. The CNF formula should be SAT if and if 3 pigeons can fit in 2 holes, otherwise formula should be UNSAT.

Boolean ——> SAT Solvers /propositional formulas

If formula is SAT is fiable, gives an satisfying assignment

SAT Solvers

Given a formula F, can we determine whether it is satisfiable? Let F is over X variables, where $X = \{x_1, x_2\}$ CheckSAT(F){ For τ in 2^n { Can we do better ? If $F(\tau) = 1$ then: We don't know! Return SAT, τ **Return UNSAT**

$$x_2, ..., x_n$$
 }.

Resolution Refutation

```
List of clauses C_1, C_2, \ldots, C_t is a resolution refutation of formula F_{CNF} if:
   C_t is empty \Box
2. C_K \in F_{CNF} or C_k is derived using resolution from C_i and C_j, where i, j < k
 \rightarrow Models(F) = Ø
      F is UNSAT
```

 $C_i = p \lor \alpha$ $C_{j} = \neg p \lor \beta$ C_k is derived from C_i, C_j Then, $C_k = \alpha \lor \beta$

Resolution Refutation

$$F = (\neg p \lor \neg q \lor r) \land (\neg p \lor C_{2})$$
Resolution on C_{1}, C_{3} $\frac{(\neg p \lor \neg q \lor r) \land (p)}{C_{5} : (\neg q \lor r)}$
Resolution on C_{2}, C_{3} $\frac{(\neg p \lor q) \land (p)}{C_{6} : (q)}$
Resolution on C_{5}, C_{4} $\frac{(\neg q \lor r) \land (\neg r)}{C_{7} : (\neg q)}$
Resolution on C_{6}, C_{7} $(q) \land (\neg q)$

$$C_8$$
 :

 $\frac{p \lor q}{C_2} \land (p) \land (\neg r)$ $\frac{1}{C_2} \land C_3 \land C_4$

List of clauses $C_1, C_2, ..., C_8$ is a resolution refutation of F

Resolution Refutation

- Thm: A formula F_{CNF} is refutable if and only if F_{CNF} is unsatisfiable
- \rightarrow direction is easy to see: if F_{CNF} is refutable then F_{CNF} is unsatisfiable.
- HW:
- \leftarrow direction: if F_{CNF} is unsatisfiable then F_{CNF} is refutable
 - Hint: Induction on # of propositional variables.

SAT Solving using Resolution

- 1. Start with F_{CNF}
- 2. Perform Resolution until
 - Empty clause is derived —> return UNSAT 1.
 - 2. No further resolution is possible --> return SAT

One of these two cases will occur — resolution is sound and complete.

Bottleneck of Resolution Refutation

Space required to preform Resolutions:

where m is number of clauses.

- 2. This is done linear many times (O(Vars(F)) many), hence over growth can be exponential.
- Resolution is EXPSPACE.

1. At every resolutions step: $\binom{m}{2}$ new clauses are added to the formula,

- Start with F_{CNF} 1.
- Pick a literal *l* that occurs with both polarities in F_{CNF} . 2.
- For every clause C in F_{CNF} containing l and every clause C' in F_{CNF} containing 3. its negation $\neg l$ perform resolution

1.
$$r = (C \setminus \{l\}) \cup (C' \setminus \{\neg l\})$$

2.
$$F_{CNF} \leftarrow add_to_formu$$

4. For every clause C that contains *l* or $\neg l$ do

1.
$$F_{CNF} \leftarrow remove_from_f$$

- $ala(r, F_{CNF})$
- formula(C, F_{CNF})

- Start with F_{CNF} 1.
- Pick a literal *l* that occurs with both polarities in F_{CNF} . 2.
- 3. its negation $\neg l$ perform resolution 1. $r = (C \setminus \{l\}) \cup (C' \setminus \{\neg l\})$ 2. $F_{CNF} \leftarrow add_to_formula(r, F_{CNF})$
- 4. For every clause C that contains *l* or $\neg l$ do

1.
$$F_{CNF} \leftarrow remove_from_fo$$

 $F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$

For every clause C in F_{CNF} containing l and every clause C' in F_{CNF} containing

 $ormula(C, F_{CNF})$

- Start with F_{CNF} 1.
- Pick a literal *l* that occurs with both polarities in F_{CNF} : 2.

1.
$$F_{CNF} \leftarrow Resolution(C, l, l)$$

4. For every clause C that contains *l* or $\neg l$ do

1.
$$F_{CNF} \leftarrow remove_from_fc$$

 F_{CNF})

 $ormula(C, F_{CNF})$

- 1. Start with F_{CNF}
- 2. If F_{CNF} has empty clause then 1. Return UNSAT
- If $\exists l$ that occurs with both polarities in different clauses in F_{CNF} 3. **Return SAT** 1.
- 3. Pick a literal *l* that occurs with both polarities in F_{CNF} .

1.
$$F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$$

For every clause C that contains *l* or $\neg l$ do :

1.
$$F_{CNF} \leftarrow remove_from_formi$$

Is this correct? How about $(p \lor \neg p)$

 $ula(C, F_{CNF})$

- Start with F_{CNF} 1.
- 2. For every clause C in F_{CNF} that contains both *l* and $\neg l$ do:

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- 3. If F_{CNF} is empty
 - 1. Return SAT
- 4. If F_{CNF} has empty clause then
 - 1. Return UNSAT
- If $\exists l$ that occurs with both polarities in different clauses in F_{CNF} 5.
 - **Return SAT** 1.
- 6. Pick a literal *l* that occurs with both polarities in F_{CNF} .

1.
$$F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$$

For every clause C that contains *l* or $\neg l$ do : 7.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- Start with F_{CNF} 1.
- For every clause C in F_{CNF} that contains both *l* and $\neg l$ do: 2.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- 3. If F_{CNF} is empty
 - **Return SAT** 1.
- 4. If F_{CNF} has empty clause then
 - Return UNSAT 1.
- If $\exists l$ that occurs with both polarities in different clauses in F_{CNF} 5. **Return SAT** 1.
- 6. Pick a literal *l* that occurs with both polarities in F_{CNF} .

1.
$$F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$$

For every clause C that contains *l* or $\neg l$ do : 7.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

Can we do better?

Pure Literal Elimination

Pure literal: a literal *l* all of which occurrences in F have the same polarity.

Example: $(p \lor q \lor r) \land (\neg q \lor r) \land (p \lor q \lor r)$

$$(p \lor q \lor r) \land (\neg q \lor r) \land (p \lor \neg r) \land (p \lor \neg q)$$

Literal p has positive polarity in all occurrence in F. P is pure literal.

 $(p \lor \neg q \lor r) \land (\neg q \lor r) \land (\neg p \lor \neg r) \land (p \lor \neg q) - \neg q$ is pure literal

$$\neg r) \land (p \lor \neg q)$$

Pure Literal Elimination

Pure literal: a literal *l* all of which occurrences in F have the same polarity. For every clause that contains a pure literal:

 $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- Start with F_{CNF} 1.
- For every clause C in F_{CNF} that either contains both *l* and $\neg l$ or has pure literal do: 2.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- 3. If F_{CNF} is empty
 - 1. Return SAT
- 4. If F_{CNF} has empty clause then
 - 1. Return UNSAT
- If $\exists l$ that occurs with both polarities in different clauses in F_{CNF} 5.
 - **Return SAT** 1.
- 6. Pick a literal *l* that occurs with both polarities in F_{CNF} .

1.
$$F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$$

For every clause C that contains *l* or $\neg l$ do : 7.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- Start with F_{CNF} 1.
- For every clause C in F_{CNF} that either contains both *l* and $\neg l$ or has pure literal do: 2.

1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

- 3. If F_{CNF} is empty
 - 1. Return SAT
- 4. If F_{CNF} has empty clause then
 - 1. Return UNSAT
- Pick a literal *l* that occurs with both polarities in F_{CNF} . 5.

$$F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$$

For every clause C that contains l or $\neg l$ do : 6.

1.
$$F_{CNF} \leftarrow remove_from_formula(C_{F})$$

 F_{CNF})

DP algorithm $F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$ $(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$ $(r) \land (r \lor \neg r) \land (\neg r \lor r) \land (\neg r)$ $(r) \land (\neg r)$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p * No pure literal, no clause with $l \vee \neg l$ Pick literal q *remove clauses with $l \vee \neg l$ Pick literal r F has empty clause – UNSAT

DP algorithm

$F = (p \lor q \lor r) \land (q \lor \neg r \lor \neg s) \land (\neg q \lor s) \land (\neg p \lor \neg s)$

Course Webpage

Thanks!