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Boolean           ——> SAT Solvers  
/propositional   
formulas 

If formula is SATisfiable, gives an satisfying 

 assignment

UNSAT



Equisatisfiable Formulas (modified)

Boolean (propositional) formulas F and G are equisatisfiable if the following holds: 

 

• Every satisfying assignment of G can be extended to the satisfying assignment of F. 

• For every there is a  such that  extends  to  and  

• Every satisfying assignment of F can be projected on  to get the satisfying 
 assignment of G. 

• For every , there is a  such that  and  

Vars(G) ⊆ Vars(F)

τ ⊧ G, τ′￼ τ′￼ τ Vars(F/G), τ′￼ ⊧ F

Vars(G)

τ′￼ ⊧ F τ τ = τ′￼↓Vars(G) τ ⊧ G



Equisatisfiable Formulas (modified)

     and    F = (p ∨ α) ∧ (¬p ∨ β) G = (α ∨ β)

Models(F) := {(p ↦ 1,α ↦ 0,β ↦ 1), (p ↦ 1,α ↦ 1,β ↦ 1), (p ↦ 0,α ↦ 1,β ↦ 0), (p ↦ 0,α ↦ 1,β ↦ 1)}

Models(F)↓Vars(G) := {(α ↦ 0,β ↦ 1), (α ↦ 1,β ↦ 1), (α ↦ 1,β ↦ 0)}

Models(F)↓Vars(G) := Models(G)

For every there is a  such that  extends  to  and  

For every , there is a  such that  and  

τ ⊧ G, τ′￼ τ′￼ τ Vars(F/G), τ′￼ ⊧ F

τ′￼ ⊧ F τ τ = τ′￼↓Vars(G) τ ⊧ G



Equisatisfiable Formulas (modified)

G = p ∨ (q ∧ r)

F = (p ∨ t) ∧ (t ↔ q ∧ r)

F′￼ = (p ∨ t) ∧ (t → q ∧ r)

Is F and G equisatisfiable?

Is F’ and G equisatisfiable?

Exercise: 

 

F =   

F’ = 

G = (x1 ∧ y1) ∨ (x2 ∧ y2)

(t1 ∨ t2) ∧ (t1 ↔ (x1 ∧ y1) ∧ (t2 ↔ (x2 ∧ y2)

(t1 ∨ t2) ∧ (t1 → (x1 ∧ y1) ∧ (t2 → (x2 ∧ y2)

Is F and G  equisatisfiable?

Is F’ and G equisatisfiable?



Constraint Encoding



Encoding of Graph Coloring to SAT

• Proper coloring:  An assignment of colors to the vertices of a graph such that no 
two adjacent vertices have same color.  

• K-color: A proper coloring involving a total of K colors.  

• Is the following graphs 2-colorable? 

V1 V2 V1 V2 V1 V2

V1 V2

V3

V1 V2

V3

V1 V2

V37



Encoding of Graph Coloring to SAT

Given a graph G(V,E) with V as a set of vertices and E as a set of edges, and an integer 
K (representing the number of colors),  can we encode the proper graph coloring into 
a CNF formula such that the formula is satisfiable (SAT) if and only if the graph is K-
colorable. 

We want to encode that: 
• No two adjacent vertices share the same color. 
•  Each vertex has exactly one color.

V1 V2

V3
8



Step 1: Propositional  Variables

• Use propositional variables  

•   is True, if and only if, vertex  is assigned  color. 

•

vi,g , where i ∈ {1,2,3}, g ∈ {R, G, B}

vi,g i g

V1 V2

V3

v1,G, v1,R, v1,B v2,G, v2,R, v2,B v3,G, v3,R, v3,B
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Step 2: Encoding Constraints

• Each vertex must have exactly one color. 

• Each vertex must have at least one color, and each vertex must have at most 
one color

How are we going to encode, each vertex must have at least one color: 

For vertex  V1 : v1,G ∨ v1,R ∨ v1,B  V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color: 

  V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

  V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

(¬v2,R ∨ ¬v2,B) ∧

  V3 : (¬v3,G ∨ ¬v3,R) ∧

(¬v3,G ∨ ¬v3,B) ∧

(¬v3,R ∨ ¬v3,B) ∧
10



Step 2: Encoding Constraints

• No two adjacent vertex have the same color.

For : 

 

 

V1 and V2

(¬v1,R ∨ ¬v2,R) ∧

(¬v1,G ∨ ¬v2,G) ∧

(¬v1,B ∨ ¬v2,B) ∧

For : 

 

 

V1 and V3

(¬v1,R ∨ ¬v3,R) ∧

(¬v1,G ∨ ¬v3,G) ∧

(¬v1,B ∨ ¬v3,B) ∧

For : 

 

 

V2 and V3

(¬v2,R ∨ ¬v3,R) ∧

(¬v2,G ∨ ¬v3,G) ∧

(¬v2,B ∨ ¬v3,B)
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Proper Coloring to SAT

V1 V2

V3

 

 

 

  

  

  

(v1,G ∨ v1,R ∨ v1,B) ∧ (v2,G ∨ v2,R ∨ v2,B) ∧ (v3,G ∨ v3,R ∨ v3,B) ∧

(¬v1,G ∨ ¬v1,R) ∧ (¬v1,G ∨ ¬v1,B) ∧ (¬v1,R ∨ ¬v1,B) ∧

(¬v2,G ∨ ¬v2,R) ∧ (¬v2,G ∨ ¬v2,B) ∧ (¬v2,R ∨ ¬v2,B) ∧

(¬v3,G ∨ ¬v3,R) ∧ (¬v3,R ∨ ¬v3,B) ∧ (¬v3,R ∨ ¬v3,B) ∧

(¬v1,R ∨ ¬v2,R) ∧ (¬v1,G ∨ ¬v2,G) ∧ (¬v1,B ∨ ¬v2,B) ∧
(¬v1,R ∨ ¬v3,R) ∧ (¬v1,G ∨ ¬v3,G) ∧ (¬v1,B ∨ ¬v3,B) ∧
(¬v2,R ∨ ¬v3,R) ∧ (¬v2,G ∨ ¬v3,G) ∧ (¬v2,B ∨ ¬v3,B)

FCNF =
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Encoding of Pigeon Hole Principle to SAT

Theorem: If we place n+1 pigeons in n holes then there is a hole with at least 2 pigeons

Thm is true for any n; can we prove it for a fixed n using SAT solvers?

Exercise: 
 
Encode Pigeon hole principle to a CNF formula for 3 pigeons and 2 holes.  
The CNF formula should be SAT if and if 3 pigeons can fit in 2 holes, otherwise  
formula should be UNSAT.



Boolean           ——> SAT Solvers  
/propositional   
formulas 

If formula is SATisfiable, gives an satisfying 

 assignment

UNSAT



SAT Solvers

Given a formula F, can we determine whether it is satisfiable?

Let F is over X variables, where .X = {x1, x2, …, xn}

CheckSAT(F){ 

For  in  { 

If  then: 

Return SAT,  

} 

Return UNSAT 

}

τ 2n

F(τ) = 1

τ

Can we do better ?

We don’t know!



Resolution Refutation

List of clauses  is a resolution refutation of formula   if: 

1.  is empty  

2.   or  is derived using resolution from  and , where  

C1, C2, …, Ct FCNF

Ct □

CK ∈ FCNF Ck Ci Cj i, j < k

 

 
Then, 

Ci = p ∨ α
Cj = ¬p ∨ β

Ck = α ∨ β

 
F is UNSAT

Models(F) = ∅

 is derived from Ck Ci, Cj



Resolution Refutation

F = (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ (p) ∧ (¬r)
C1 C2 C3 C4

Resolution on C1, C3
(¬p ∨ ¬q ∨ r) ∧ (p)

C5 : (¬q ∨ r)

Resolution on C2, C3
(¬p ∨ q) ∧ (p)

C6 : (q)

Resolution on C5, C4
(¬q ∨ r) ∧ (¬r)

C7 : (¬q)

Resolution on C6, C7 (q) ∧ (¬q)

C8 : □

List of clauses   is a resolution  
refutation of F

C1, C2, …, C8



Resolution Refutation

Thm: A formula  is refutable if and only if  is unsatisfiableFCNF FCNF

 direction is easy to see: if  is refutable then  is unsatisfiable.→ FCNF FCNF

 direction: if  is unsatisfiable then  is refutable← FCNF FCNF

HW: 

Hint: Induction on  of propositional variables.#



SAT Solving using Resolution 

1. Start with  

2. Perform Resolution until 

1. Empty clause is derived —> return UNSAT 

2. No further resolution is possible  —-> return SAT

FCNF

One of these two cases will occur — resolution is sound and complete. 



Bottleneck of Resolution Refutation

Space required to preform Resolutions: 

1. At every resolutions step:  new clauses are added to the formula,  

                  where m is number of clauses. 

2. This is done linear many times (O( ) many), 
 hence over growth can be exponential.  

3. Resolution is EXPSPACE. 

(m
2 )

Vars(F)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 

1. Start with  

2. Pick a literal  that occurs with both polarities in  . 

3. For every clause C in  containing  and every clause  in  containing  
its negation  perform resolution  

1.  

2.  

4.  For every clause C that contains  or  do 

 1.   

FCNF

l FCNF

FCNF l C′￼ FCNF
¬l

r = (C∖{l}) ∪ (C′￼∖{¬l})

FCNF ← add_to_ formula(r, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 

1. Start with  

2. Pick a literal  that occurs with both polarities in  . 

3. For every clause C in  containing  and every clause  in  containing  
its negation  perform resolution  

1.  

2.  

4.  For every clause C that contains  or  do 

 1.   

FCNF

l FCNF

FCNF l C′￼ FCNF
¬l

r = (C∖{l}) ∪ (C′￼∖{¬l})

FCNF ← add_to_ formula(r, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

FCNF ← Resolution(C, l, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 

1. Start with  

2. Pick a literal  that occurs with both polarities in  : 

1.  

4.  For every clause C that contains  or  do 

 1.   

FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 

1. Start with  

2. If  has empty clause then 

1. Return UNSAT 

3.    If  that occurs with both polarities in different clauses in  

 1.     Return SAT     

3. Pick a literal  that occurs with both polarities in  . 

1.  

4.  For every clause C that contains  or  do : 

1.

FCNF

FCNF

/∃l FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

Is this correct? 
How about (p ∨ ¬p)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 
1. Start with  

2. For every clause C in  that contains both  and  do: 

1.  

3. If   is empty 

1. Return SAT  

4. If  has empty clause then 

1. Return UNSAT 

5. If  that occurs with both polarities in different clauses in  

 1.     Return SAT     

6. Pick a literal  that occurs with both polarities in  . 

1.  

7.  For every clause C that contains  or  do : 

1.

FCNF

FCNF l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

FCNF

FCNF

/∃l FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 
1. Start with  

2. For every clause C in  that contains both  and  do: 

1.  

3. If   is empty 

1. Return SAT  

4. If  has empty clause then 

1. Return UNSAT 

5. If  that occurs with both polarities in different clauses in  

 1.     Return SAT     

6. Pick a literal  that occurs with both polarities in  . 

1.  

7.  For every clause C that contains  or  do : 

1.

FCNF

FCNF l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

FCNF

FCNF

/∃l FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

Can we do better?



Pure Literal Elimination 

Pure literal: a literal  all of which occurrences in F have the same polarity. l

Example:  (p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (p ∨ ¬r) ∧ (p ∨ ¬q)

(p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (p ∨ ¬r) ∧ (p ∨ ¬q)

Literal p has positive polarity in all occurrence in F.  P is pure literal. 

  —  is pure literal (p ∨ ¬q ∨ r) ∧ (¬q ∨ r) ∧ (¬p ∨ ¬r) ∧ (p ∨ ¬q) ¬q



Pure Literal Elimination 

Pure literal: a literal  all of which occurrences in F have the same polarity. l
For every clause that contains a pure literal: 

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 
1. Start with  

2. For every clause C in  that either contains both  and   or has pure literal do: 

1.  

3. If   is empty 

1. Return SAT  

4. If  has empty clause then 

1. Return UNSAT 

5. If  that occurs with both polarities in different clauses in  

 1.     Return SAT     

6. Pick a literal  that occurs with both polarities in  . 

1.  

7.  For every clause C that contains  or  do : 

1.

FCNF

FCNF l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

FCNF

FCNF

/∃l FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960) 

1. Start with  

2. For every clause C in  that either contains both  and   or has pure literal do: 

1.  

3. If   is empty 

1. Return SAT  

4. If  has empty clause then 

1. Return UNSAT   

5. Pick a literal  that occurs with both polarities in  . 

1.  

6.  For every clause C that contains  or  do : 

1.

FCNF

FCNF l ¬l

FCNF ← remove_ from_ formula(C, FCNF)

FCNF

FCNF

l FCNF

FCNF ← Resolution(C, l, FCNF)

l ¬l

FCNF ← remove_ from_ formula(C, FCNF)



DP algorithm

F = (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r)
* No pure literal, no clause with l ∨ ¬l

Pick literal p

(q ∨ r) ∧ (q ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r)

Pick literal q
* No pure literal, no clause with l ∨ ¬l

(r) ∧ (r ∨ ¬r) ∧ (¬r ∨ r) ∧ (¬r) *remove  clauses with l ∨ ¬l

(r) ∧ (¬r) Pick literal r

F has empty clause — UNSAT



DP algorithm

F = (p ∨ q ∨ r) ∧ (q ∨ ¬r ∨ ¬s) ∧ (¬q ∨ s) ∧ (¬p ∨ ¬s)
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