COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https:/priyanka-golia.github.io/teaching/COL-750/index.html

Bounded Model Checking with SAT (BMC)

General idea:
Fix a K

1. Convert transition system to propositional encoding — unroll for path
length k

2. Convert temporal formula along the states to propositional encoding for k
length

3. Using SAT Solvers look for counterexamples
4. Found a counterexample :

Return counterexample
5. Else:

K= K+1

?
6. At some point, check if K > rd Return True, Else: K = K+1 [For safety property:

AWARD

Most influential paper
in the First 20 years of TACAS

Symbolic Model Checking without BDDs"
Armin Biere!, Alessandro CimattiZ, Edmund Clarke!, Yunshan Zhu!

mmwc-w Mellen llvudty
5000 Forbes Avenue, Pittsburgh PA
4

nnnnnnnnnnnnnnnnnnn
2 Istinato per la Ricerca Scientifica ¢ Tecnologica (IRST)

nam Procedure [7), can replace BDDs. This new technique avoids the space blow
wp of BDDs, gencrates counterexamples muoch faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length, We

1 Introduction

Mmhﬂm«dﬂ“mhhmmmmdmm
largely momnc.

hmalcbxkh‘.hqeﬁedonhwuuw mmmmm

of

mmmhmhpnlﬁeuplmlmmdo!hmmmh-
feasible. Symbolic no‘dcheh-:; Mboolunwuhu f the finite state
nuchhe,anhndhmhn states. BDDs (2], a canonical form for boolecn

-

extensions to completeness

diameter checking,
k-induction,
interpolation —

SAT based model checking without unrolling:
[C3

Induction For verifying safety property/ verifying reachability properties.

Often the completeness threshold is very large.

Exploring techniques that requires fewer unwinding.

S0 S1 2 L) Sq
(—(o—(—CY

MEY[p MEV[q

Induction principles —

To prove the claim Q(n) for all values of some parameter n.

We need to show the Base case — Q(0)
validity of these cases Inductive step case — Q(n-1) -> Q(n)

Induction For verifying safety property/ veritying reachability properties.

S S S S S
(e —(—l)— (D wrvoy

Induction principles To prove V[] p, we prove that p(x(rn)) holds for Vn

Given M, 7 denotes a path in M.
i state in 7 is 7(7).
p(n(i)) is to denote that property p holds in state 7(7)

ldea — base case (initial states). p(s,) holds.
Inductive step. Assuming p(z(n — 1)) holds, p(a(n)) must hold.

all the states labelled with p, that is, {0,1,2,) |Allthe states where pai = 1)) holdst

p(7(n)) must hold true, which will be successor of {0,1,2} —{1,2}

Induction For verifying safety property/ verifying reachability properties.

S S S S S
(L= wevo

To prove V[] p, we prove that p(z(n)) holds for Vn

ldea — base case (initial states). p(s;) holds.
Inductive step. p(w(n — 1)) holds, states labelled with p, that is, {0,1,2}

p(m(n)) must hold true, which will be successor of {0,1,2} —{1,2}

Validity of the base case and inductive step?

Validity of F = —F being UNSAT.

Induction For verifying safety property/ verifying reachability properties.

S S S S S
(L= wevo

To prove V[] p, we prove that p(z(n)) holds for Vn

For base case, check satisfiability of
s, Ap(s,) Vs €1 (p,ANqg,) \Np,
[f this is UNSAT, then all initial state satisfy p.

Inductive case — observation T(zw(n — 1), z(n)) holds.

Let s be the statesin z(n — 1) Let s’ be the states in 7z(n)

Validity of p(s) A T(s, s") = p(s’) CheckSAT(p(s) A T(s,s") A p(s’))

Induction For verifying safety property/ verifying reachability properties.

S S S S S
~((LD~ wrvms

To prove V[] p, we prove that p(x(n)) holds for Vn

Inductive case — observation 7(z(n — 1), z(n)) holds.

Let s be the statesin z(n — 1) Let s’ be the states in 7#(n)

Validity of p(s) A T(s, s') — p(s’) CheckSAT (p(s) A T(s,s) A p(s’) Vs € §,s.t. P(s)

CheckSAT((p, A pD V (py A=py) V(P V p3) AT)

This requires only a single copy of T.

Induction For verifying safety property/ verifying reachability properties.

To prove V[] g, we prove that g(x(n)) holds for Vn

Base case: ¢, A 7¢q,, UNSAT

Inductive case: (g, A 7q;) V(g1 A~qy) V(g Aq3) V(s A—gy)) AT SAT

M |Z V[g Inductive step case —g(n(n — 1)) — g(x(n))

Inductive case also deals with unreachable states

K-Induction For verifying safety property/ verifying reachability properties.

we strengthen the criterion for base case, and weaken the criterion for step case.

Input K, M, F/P

Base case — p(O) A ... Ap(K—1)

Any path with k states labelled with p,
Step case —p(n — K) A . A p(n _ 1) — p(n) is followed by a state labelled with p.

A \ S
(o (LD~ wrvog ke

K-Induction For verifying safety property/ verifying reachability properties.
Base case — PO A...Ap(K—1) Stepcase—pn—K)A...Ap(n—1) — pn)

Base case — property holds in K states starting from initial state Same as BMC

Property g holds true in {o,1}

Inductive step — we need to consider all paths with two states.
Property q holds true in {0,1}, {1,2},{2,2},{3,2}

For each of these paths, g holds in their successor

Property g holds true in {2}

S0 S1 S5 $3 Sy
) (D v

K-Induction For verifying safety property/ verifying reachability properties.
Base case — PO A...Ap(K—1) Stepcase—pn—K)A...Ap(n—1) — pn)

Base case — property holds in K states starting from initial state SameasBMC

My \ 1y,
Inductive step — we need to consider all paths with K states.

k—1 k—1
N TG 500 A\ (00s) A =p(sy)
i=0 i=0

50) 51) 53 54

K-Induction For verifying safety property/ verifying reachability properties.

So S Sy S5 Sy Ss Se,
9 : L
- Neither of the two states are initial states
MEYV I:I q Nor are they reachable from an initial state.

k—1 k—1
/\ 1(s;, 8;.1) A /\ ((p(s;) A p(sy) This should be UNSAT!
i=0 =0

No, irrespective of K, thisis SAT g+ 5.5, | > 5,5, > 6

O

k-1 k
Therefore, to obtain completeness — we need to add /\ /\ S; F S; Ensuring simple path
i=0 j=i+1

K-Induction For verifying safety property/ verifying reachability properties.

Base case — property holds in K states starting from initial state
M, A p, = 1(s,) A /\ 1(s;, Si+1) A TP, Same as BMC
i=0

Inductive step — we need to consider all paths with K states.

/\T(s,, Si1) A /\((p(s) A =p(s) A /\ /\ 5, % 5

=0 j=i+1

* If Base case is SAT, return counterexample.
* If Inductive case is UNSAT, return True.

 Otherwise, increase K and continue.

K-Induction For verifying safety property/ verifying reachability properties.

Observations

1. We do not need to know the exact reachable states, as long as we can guarantee
they meet the property .

2. Beginning of “Property directed” techniques — which is associated with a family
of techniques that build inductive invariants automatically

Interpolants based Model Checking

Interpolants: INGHICEHIBCIIGNANSST

Let A and B be two formulas suchthat:AABF L
then, there exists a formula 7 called Interpolant such that:

1.A —> 1
2. INBE L
3. Vars(l) C Vars(A) N Vars(B)

It acts as a kind of summary or abstraction of A relevant to the contradiction with B.

A=(pPVg A(pVr) B =-gA-r I=(qVr)

How to Compute Interpolants!

1. A A B are unsatisfiable.

SAT solver can return resolution proof!

All the initial nodes have in-degree 0. All internal nodes have in-degree 2.
Sink nodes has out-degree o.

Internal node v, with edges (v, v), (v,, v) implies that v is a resolvent of
Vi, Vo

A=(pVag A(TpVr)Ag B=(2gVr)A(@Vs)A-s

How to Compute Interpolants!

1. A A B are unsatisfiable. SAT solver can return resolution proof!

All the initial nodes have in-degree 0. All internal nodes have in-degree 2. Sink nodes
has out-degree o. Internal node v, with edges (v, v), (v,, v), vis a resolvent of v, v,

A=(PVagA(pVr)Ag B=(2gVr)A(G@Vs)A-s

AANB=(pVag A(mpVr)AgA(mgVTr)A(@GVs)A-s

p\/—'q —IpV—II’ _'qu q\/S S
\ q

P '

v q q

—Iq\/—lr /

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

EPV_'Q pyVr q gVvVr gVs mh)

/ \ Ry
p p '
I q q q

iy . . | Vars(I) C Vars(A) A Vars(B)
\ | /

VC € Clauses(A), Cl(VarS(B))

A—-1

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

oq g "qVr gvs s

/ \ S
p p '
) q q q

iy . . | Vars(I) C Vars(A) A Vars(B)
\ | /

VC € Clauses(A), Cl(VarS(B))

A—-1

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

7
\FA 1 / VC € Clauses(B), True

Clauses(B) doesn’t contribute to |

I A B E 1 will be taken care by internal nodes.

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

g ar q True 'True True

| LT

P| / A . q'
Y _IF\A /

\ / VC € Clauses(B), True

Clauses(B) doesn’t contribute to |

I A B E 1 will be taken care by internal nodes.

How to Compute Interpolants!

=PV A(pVINAg B=(2gVr)A(GVs)ATs

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

b7] g True True True

d / q q
—Iq\/—lr
\ /

When pivot variable is B

Internal nodes will be “AND” of its both source nodes

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

b7 =14 g True 'True True
\ s
P /
' q q True A True
gV r

q\A
—r

\}/.A |
1
When pivot variable is B

Internal nodes will be “AND” of its both source nodes _

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

b7 =14 g True 'True True
\ S
p /
' q q True A True
gV r

q\A
—r

\I"A
1
When pivot variable is B

Internal nodes will be “AND” of its both source nodes _

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

b7 — 7 g True 'True True
\ s
q q True A True

\ True A Tme%
T~ =

When pivot variable is A

Internal nodes will be “OR” of its both source nodes _

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

True 'True True

\ 5

q True A True
q

True A Irue

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

True 'True True

\ 5

q True A True
q

How to Compute Interpolants!

A=pPVagA(pVIr)ANg B=(2gVr)A@Vs)A-s I=gA-r

AANB=(pV g AN(pVar)AgA(mgVTr)A(@GVs)A-s

b7 =14 g True 'True True
\ S
p /
' q q True A True
gV r

q\A True A Tn/te%
r A

Interpolant is at the sink node

e Varss)

How to Compute Interpolants! McMillan interpolation algorithm (2003)

All the initial nodes have in-degree O. All internal nodes

L. ComPUte Resolution Proof of A and B have in-degree 2. Sink nodes has out-degree O.

: Internal node v, with edges (v{, v), (v,, V) implies that v is
2. Base case (input clauses): 1 2

It C € Clauses(A):

Ic — Cl(Vars(B))
It C € Clauses(B) :

[. = True

a resolvent of v, v,

3. Resolution step: Cis Derived by C, and C, over pivot x.
It x € Vars(B):

IC — ICI AN IC2
It x € Vars(A):

Interpolant of A,Bis I,

I =1 VI
1 2

Compute Interpolants

A=pPV@AN(-pVr) B=—-gA-r

Compute Interpolants

A=pPV@AN(-pVr) B=—-gA-r

pVq pVr (g r q r lrue True
q /< r q /< I
' -p r A True

p q /\ True
\ /
1

