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Bounded Model Checking with SAT (BMC)
General idea: 
Fix a K 

1.  Convert transition system to propositional encoding — unroll for path 
length k 

2. Convert temporal formula along the states to propositional encoding for k 
length 

3. Using SAT Solvers look for counterexamples 

4.  Found a counterexample : 

   Return counterexample  

5.         Else: 

K= K+1 

6.   At some point, check  if   Return True, Else:  K = K+1 K
?
≥ rd For safety property.



extensions to completeness   
diameter checking,  

k-induction,  

interpolation – 

 SAT based model checking without unrolling: 
IC3

Prove or Disprove that the recurrence diameter is 
a completeness threshold for properties of the 

form .  ∀◊P



Induction For verifying safety property/ verifying reachability properties.

Often the completeness threshold is very large.  

Exploring techniques that requires fewer unwinding. 

P,q P,q P,q ,q

M ⊧ ∀ □ p M ⊧ ∀ □ q

Induction principles —  

To prove the claim  for all values of some parameter n. Q(n)
Base case — Q(0)  
Inductive step case — Q(n-1) -> Q(n)

s0 s1 s2 s3 s4

We need to show the 
validity of these cases



Induction For verifying safety property/ verifying reachability properties.

P,q P,q P,q ,q M ⊧ ∀ □ p

Induction principles 
Given M,  denotes a path in M.  

 state in  is .  

 is to denote that property p  holds in state 

π

ith π π(i)

p(π(i)) π(i)

To prove , we prove that  holds for ∀ □ p p(π(n)) ∀n

Idea — base case (initial states).  holds.  
Inductive step.  Assuming  holds,  must hold. 
all the states labelled with p, that is, 

p(s0)
p(π(n − 1)) p(π(n))

{0,1,2,}

 must hold true, which will be successor of  — p(π(n)) {0,1,2} {1,2}

s0 s1 s2 s3 s4

All the states where  holds!p(π(n − 1))



Induction For verifying safety property/ verifying reachability properties.

P,q P,q P,q ,q M ⊧ ∀ □ p

To prove , we prove that  holds for ∀ □ p p(π(n)) ∀n

Idea — base case (initial states).  holds.  
Inductive step.  holds, states labelled with p, that is, 

p(s0)
p(π(n − 1)) {0,1,2}

 must hold true, which will be successor of  — p(π(n)) {0,1,2} {1,2}

Validity of the base case and inductive step? 

Validity of F   being UNSAT. ≡ ¬F

s0 s1 s2 s3 s4



Induction For verifying safety property/ verifying reachability properties.

P,q P,q P,q ,q M ⊧ ∀ □ p

To prove , we prove that  holds for ∀ □ p p(π(n)) ∀n

For base case, check  satisfiability of 
so ∧ ¬p(so) ∀so ∈ I (po ∧ qo) ∧ ¬po

If this is UNSAT, then all initial state satisfy p. 

Inductive case — observation  holds.  T(π(n − 1), π(n))

Let  be the states in s π(n − 1) Let  be the states in s′ π(n)

Validity of p(s) ∧ T(s, s′ ) → p(s′ ) CheckSAT( ) p(s) ∧ T(s, s′ ) ∧ ¬p(s′ )

s0 s1 s2 s3 s4



Induction For verifying safety property/ verifying reachability properties.

P,q P,q P,q ,q M ⊧ ∀ □ p

To prove , we prove that  holds for ∀ □ p p(π(n)) ∀n

Inductive case — observation  holds.  T(π(n − 1), π(n))

Let  be the states in s π(n − 1) Let  be the states in s′ π(n)

Validity of p(s) ∧ T(s, s′ ) → p(s′ ) CheckSAT( ) p(s) ∧ T(s, s′ ) ∧ ¬p(s′ )

Inductive steps — any reachable state in model M 

This requires only a single copy of T. 

, s.t. ∀s ∈ S P(s)

CheckSAT(  (po ∧ ¬p′ 1) ∨ (p1 ∧ ¬p′ 2) ∨ (p2 ∨ ¬p′ 3) ∧ T)

s0 s1 s2 s3 s4



Induction For verifying safety property/ verifying reachability properties.

P,q P,q P,q ,q M ⊧ ∀ □ q

To prove , we prove that  holds for ∀ □ q q(π(n)) ∀n

Base case: qo ∧ ¬qo

Inductive case: ((qo ∧ ¬q′ 1) ∨ (q1 ∧ ¬q′ 2) ∨ (q2 ∧ ¬q′ 3) ∨ (q3 ∧ ¬q′ 4)) ∧ T

UNSAT

SAT

M
?
⊧ ∀ □ q

 
Inductive step case —q(π(n − 1)) → q(π(n))

Inductive case also deals with unreachable states

s0 s1 s2 s3 s4



K-Induction For verifying safety property/ verifying reachability properties.

we strengthen the criterion for base case, and weaken the criterion for step case.

Input K, M, F/P 

Base case — p(0) ∧ … ∧ p(K − 1)

Step case — p(n − K) ∧ … ∧ p(n − 1) → p(n)
Any path with k states labelled with p,  
is followed by a state labelled with p. 

P,q P,q P,q ,q M ⊧ ∀ □ q K = 2

s0 s1 s2 s3 s4



K-Induction For verifying safety property/ verifying reachability properties.

Base case — p(0) ∧ … ∧ p(K − 1) Step case — p(n − K) ∧ … ∧ p(n − 1) → p(n)

P,q P,q P,q ,q M ⊧ ∀ □ q

Base case — property holds in K states starting from initial state Same as BMC

K = 2

Property q holds true in {0,1} 

Inductive step — we need to consider all paths with two states. 

Property q holds true in {0,1}, {1,2},{2,2},{3,2} 

For each of these paths, q holds in their successor 
Property q holds true in {2}

s0 s1 s2 s3 s4



K-Induction For verifying safety property/ verifying reachability properties.

Base case — p(0) ∧ … ∧ p(K − 1) Step case — p(n − K) ∧ … ∧ p(n − 1) → p(n)

P,q P,q P,q ,q M ⊧ ∀ □ q

Base case — property holds in K states starting from initial state Same as BMC

K = 2

Inductive step — we need to consider all paths with K states. 

Mk ∧ ¬pk

k−1

⋀
i=0

T(si, si+1) ∧
k−1

⋀
i=0

((p(si)) ∧ ¬p(sk)

s0 s1 s2 s3 s4



P,q P,q P,q ,q ,q

K-Induction For verifying safety property/ verifying reachability properties.

Neither of the two states are initial states 
Nor are they reachable from an initial state. M

?
⊧ ∀ □ q

k−1

⋀
i=0

T(si, si+1) ∧
k−1

⋀
i=0

((p(si)) ∧ ¬p(sk) This should be UNSAT! 

No, irrespective of K, this is SAT so ↦ 5,…, sk+1 ↦ 5,sk ↦ 6

s0 s1 s2 s3 s4 s6s5

Therefore, to obtain completeness — we need to add 
k−1

⋀
i=0

k

⋀
j=i+1

si ≠ sj Ensuring simple path



K-Induction For verifying safety property/ verifying reachability properties.

Base case — property holds in K states starting from initial state 

Same as BMC

Inductive step — we need to consider all paths with K states. 

Mk ∧ ¬pk ≡ I(so) ∧
k−1

⋀
i=0

T(si, si+1) ∧ ¬pk

k−1

⋀
i=0

T(si, si+1) ∧
k−1

⋀
i=0

((p(si)) ∧ ¬p(sk) ∧
k−1

⋀
i=0

k

⋀
j=i+1

si ≠ sj

• If Base case is SAT, return counterexample. 

• If Inductive case is UNSAT, return True.  

• Otherwise, increase K and continue.



K-Induction For verifying safety property/ verifying reachability properties.

Observations 
  

1. We do not need to know the exact reachable states, as long as we can guarantee 
they meet the property . 

2. Beginning of “Property directed” techniques — which is associated with a family 
of techniques that build inductive invariants automatically

Property Directed Reachability (PDR) is another name for IC3 (Incremental Construction of Inductive Clauses for 
Indubitable Correctness). 

The phrase “property directed” refers to how IC3 works — it constructs inductive invariants incrementally, guided 
by the property being verified. 

k-induction extends the capabilities of BMC by not only detecting counterexamples within a bounded number of 
steps but also proving the absence of such counterexamples, thereby establishing the validity of properties over 

unbounded executions



Interpolants based Model Checking 

Interpolants: 
Let  and B be two formulas such that :  
then, there exists a formula  called Interpolant such that: 
1.  
2.  
3. 

A A ∧ B ⊧ ⊥
I

A → I
I ∧ B ⊧ ⊥
Vars(I) ⊆ Vars(A) ∩ Vars(B)

It acts as a kind of summary or abstraction of A relevant to the contradiction with B.

A = (p ∨ q) ∧ (¬p ∨ r) B = ¬q ∧ ¬r I = (q ∨ r)

Introduced by Craig in 1957



How to Compute Interpolants!

1.  are unsatisfiable.A ∧ B

SAT solver can return resolution proof!

All the initial nodes have in-degree 0.  All internal nodes have in-degree 2. 
Sink nodes has out-degree 0. 

Internal node , with edges  implies that  is a resolvent of v (v1, v), (v2, v) v
v1, v2

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s



How to Compute Interpolants!

1.  are unsatisfiable.A ∧ B SAT solver can return resolution proof!

All the initial nodes have in-degree 0.  All internal nodes have in-degree 2. Sink nodes 
has out-degree 0.   Internal node , with edges ,  is a resolvent of v (v1, v), (v2, v) v v1, v2

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

p ∨ ¬q ¬p ∨ ¬r q ¬q ∨ r q ∨ s ¬s

¬q ∨ ¬r

¬r

q

r

⊥

pp q

q

s s
q

q

r r



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

p ∨ ¬q ¬p ∨ ¬r q ¬q ∨ r q ∨ s ¬s

¬q ∨ ¬r

¬r

q

r

⊥
Vars(I) ⊆ Vars(A) ∧ Vars(B)

∀C ∈ Clauses(A), C↓(Vars(B))

pp q

q

s s
q

q

r r

A → I



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q ¬q ∨ r q ∨ s ¬s

¬q ∨ ¬r

¬r

q

r

⊥
Vars(I) ⊆ Vars(A) ∧ Vars(B)

∀C ∈ Clauses(A), C↓(Vars(B))

pp q

q

s s
q

q

r r

A → I



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q ¬q ∨ r q ∨ s ¬s

¬q ∨ ¬r

¬r

q

r

⊥ ∀C ∈ Clauses(B), True

pp q

q

s s
q

q

r r

 doesn’t contribute to IClauses(B)
 will be taken care by internal nodes.I ∧ B ⊧ ⊥



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

q

r

⊥ ∀C ∈ Clauses(B), True

pp q

q

s s
q

q

r r

 doesn’t contribute to IClauses(B)
 will be taken care by internal nodes.I ∧ B ⊧ ⊥

True True



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

q

r

⊥

pp q

q

s s
q

q

r r

True True

When pivot variable is B 
Internal nodes will be “AND” of its both source nodes

To preserve the contradiction with B.  
“both source should be considered. 



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

True ∧ True

True ∧ True

⊥

pp q

q

s s
q

q

r r

True True

When pivot variable is B 
Internal nodes will be “AND” of its both source nodes

To preserve the contradiction with B.  
“both source should be considered. 



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

True ∧ True

True ∧ True

⊥

pp q

q

s s
q

q

r r

True True

When pivot variable is B 
Internal nodes will be “AND” of its both source nodes

To preserve the contradiction with B.  
“both” source should be considered. 



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

True ∧ True

True ∧ True

⊥

pp q

q

s s
q

q

r r

True True

When pivot variable is A
Internal nodes will be “OR” of its both source nodes

To preserve the implication. 
Node implies either left clause or right clause



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r

True ∧ True

True ∧ True

⊥

pp

q
q

s s
q

q

r r

True True

q ∈ Vars(B) To preserve the contradiction with B.  
“both” source should be considered. 



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r ∧ q

True ∧ True

True ∧ True

⊥

pp q

q

s s
q

q

r r

True True

q ∈ Vars(B) To preserve the contradiction with B.  
“both” source should be considered. 



How to Compute Interpolants!

A = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q B = (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

A ∧ B = (p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ q ∧ (¬q ∨ r) ∧ (q ∨ s) ∧ ¬s

¬q ¬r q True

¬q ∨ ¬r

¬r ∧ q

True ∧ True

True ∧ True

q ∧ ¬r

pp q

q

s s
q

q

r r

True True

r ∈ Vars(B) To preserve the contradiction with B.  
“both” source should be considered. 

Interpolant is at the sink node

I = q ∧ ¬r



How to Compute Interpolants! McMillan interpolation algorithm (2003)

1. Compute Resolution Proof of A and B All the initial nodes have in-degree 0.  All internal nodes 
have in-degree 2. Sink nodes has out-degree 0. 

Internal node , with edges  implies that  is 
a resolvent of 

v (v1, v), (v2, v) v
v1, v2

2. Base case (input clauses): 
           If : 
                       
          If  
                     

C ∈ Clauses(A)
Ic = C↓(Vars(B))

C ∈ Clauses(B) :
Ic = True

3.  Resolution step:   is Derived by  and  over pivot x. 
           If : 
                      
           If : 

                      
                    

C C1 C2
x ∈ Vars(B)

IC = IC1
∧ IC2

x ∈ Vars(A)

Ic = Ic1
∨ Ic2

Interpolant of A,B is I⊥



Compute Interpolants 

A = (p ∨ q) ∧ (¬p ∨ r) B = ¬q ∧ ¬r



Compute Interpolants 

A = (p ∨ q) ∧ (¬p ∨ r) B = ¬q ∧ ¬r

p ∨ q ¬p ∨ r ¬q r

q q
¬p

r r

p
p

p

⊥

q r True True

q q

r ∧ True

r r

q ∧ True
p

p

q ∨ r


