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Model Checking Algorithm — so far

M,s E F?

Algorithm S s.t.SCS,and M, sEF Vs ey

K ' All states s of the model M that satisfy F




Model Checking Algorithm

I

M.,s EF?)

Yes, it M,s F F,Vs €1

" No,ifdsels.t.M,s FF,
A path of the system M

demonstrating that M
can’t satisfy F

M . M E F?

Bounded Model Checking with SAT (BMC)

Given: Transition system M, Temporal logic formula F, and a user-supplied time bound k

Output: UNSAT, if M unrolled upto & satisfies F
A counterexample if M unrolled upto k don’t satisfy F



Model Checking Algorithm

M,s E F? i

-Yes, there is a counterexample o F M, A °F),

. No, if M, E Fi,,Vs €1

M, . SAT{M, A —~F,}?

Bounded Model Checking with SAT (BMC)

Given: Transition system M, Temporal logic formula F, and a user-supplied time bound k

Output: UNSAT, if M unrolled upto & satisfies F
A counterexample if if M unrolled upto k don’t satisfy F



Bounded Model Checking with SAT (BMC)

General idea:

1. Convert transition system to propositional encoding — unroll for path
length k

2. Convert temporal formula along the states to propositional encoding for
k length.

3. Using SAT Solvers look for counterexamples



Bounded Model Checking with SAT (BMC)

Given two processes P and Q which share a resource R.
1. If Ris accessed by P, then property p is True.
2. If Ris accessed by Q, then property q is True.

|
Does V[ ]=(p A q)
\ K

l



Bounded Model Checking with SAT (BMC)

|

Does Op A0

M, = (7pg Agg) A((Tpg Agg APy Ag) VYV (Tpg A gg AP A gq)) K=1

“F=pr A g

_ . UNSAT,M,_, F F,_,




Bounded Model Checking with SAT (BMC)

Does V[ ] (p A g) K'=2
Grd

M, = (7pg Agg) A((Tpg Agg APy Ag) VYV (Tpg A gg AP A gq)) K=1

M, = (7py A =Ggo) A((7pg A gy APy A=q) V (Tpg A =gy AP A qq))

APLA=GAPL AN (PLA=GE AP ARGV (TP A g APy Agy) (K52



Bounded Model Checking with SAT (BMC)

|

M, = (7pyg A =Ggo) A((7pg A gy APy A=q) V (Tpyg A =gy AP A qp))
APIATGADLAG)Y (PLATG APy ATG)) NV (TP Agy APy A7)

“F=30(pAg) ~Fi=pAq SR

K

2



Bounded Model Checking with SAT (BMC)

|

M, = (7pg A 7qp) A((7pg Ago APy Ag) VY (Tpg A gy APy A qp))
APIATGADLAG)Y (PLATG APy ATG)) NV (TP Agy APy A7)

K

2



Bounded Model Checking with SAT (BMC)

Two-bit counter

: F=VQ(pArgq) -~F=3-pVgq
1,4 ,(Sz’l?? K=3

M,=("p, A7g,) AP, AGg, AP AG) A(TPIANGE APy ATGy) A((PaATGy Ap3s AGg3) NV (P A TGy APy A )

aF,=(p,Vg,)A(opVg) A(TpyVg) A(TpsViogs)

von-r, SN

‘What happens for K= 2?7
O = <pO:O,QO:()9p1 :()9QI — 19p2: 19Q2:O9p3 — 1’q3 :O> - -




Bounded Model Checking with SAT (BMC)

Lasso: A lasso is a finite path that consists of:
A prefix: a finite sequence of transitions from the initial state.

A loop: a back edge that loops from the last state back to some earlier state.

k
Lasso(s,, ...,S;) := \/ 1(s» S;)

k
M, E (A0 ~p), := M, A (Lassofs,, ...,s) A /\—Ip(sl-)



Bounded Model Checking with SAT (BMC)

?
\@ MENYO(p A gq) K =2

51,4 525 P

k k
LaSSOk(Sga ARy Sk) = \/ T(Sk9 Si) Mk F (3 |:| _Ip)k - = Mk A (LaSSOi(SO’ =t Sk) A /\ _Ip(Si)

M, E(d[]pVq),:=

M, A (1(s5,59) V 1(55,51) V 1(85,5)) A(7p,V 7g,) A(7p Vg A(TpyV 1g,))



Bounded Model Checking with SAT (BMC)

How big should be K?

For every model M and formula (LTL/CTL) F, there exists k, such that
ME F > MEF




Bounded Model Checking with SAT (BMC)

How big should be K?

For every model M and formula (LTL/CTL) F, there exists k, such that
MEy F—> MEF

Diameter of M

The diameter of a Kripke structure is the longest shortest path between
any two reachable states. Formally:

Diameter(M) = Max ShortestPathLength(s, s’)
Vs, s'eT



Bounded Model Checking with SAT (BMC)

Diameter of M

The diameter of a Kripke structure is the longest shortest path between
any two reachable states. Formally:

Diameter(M) = Max ShortestPathLength(s, s’)
Vs, s'eT

[t measures how far apart any two states can be.

[t gives a worst case bound on how many steps are required to reach any states from another
states.



Bounded Model Checking with SAT (BMC)

Diameter of M What is the smallest k such that every state is reachable within k transitions?

The diameter of a Kripke structure is the longest shortest path between
any two reachable states. Formally:

Diameter(M) = Max ShortestPathLength(s, s’)

Vs, s'el
/ (] [ )
Diameter i1s 2.

(o) =




Bounded Model Checking with SAT (BMC)

Diameter of M What is the smallest k such that every state is reachable within k transitions?

The diameter of a Kripke structure is the longest shortest path between
any two reachable states. Formally:

Diameter(M) = Max ShortestPathLength(s, s’)
Vs, s'eT

/ : Diameter is 2.




Bounded Model Checking with SAT (BMC)

Minimum k required for finding a counterexample for VOp ?

k
M, E (A ~p), := M, A (Lassofs,, ...,s) A /\ —p(s;)
Diameter is 2. L




Bounded Model Checking with SAT (BMC)

Diameter of M

Given a model M, the diameter of M is a completeness threshold for any property of the
form V[ ]p

Safety properties — something always holding.

Counterexample — (3{) 7p) can we find a bad state in k step?




Bounded Model Checking with SAT (BMC)

Diameter of M The diameter of a Kripke structure is the longest shortest path between
any two reachable states. Formally:

2 Diameter(M) = Max ShortestPathLength(s, s')
How to checkif K > d? Vs.s'€T

State s is reachable in j steps:

ji—1
Rj(s) = ds,,...,5;5.1. Sj/\I(SO) A /\T(Sl-, i 1)

1=0
K is greater than or equal to Diameter d if

Vs : Ry (s) = 3j < k Ry(s) For all states, does there exists a path of length at most k?

Computationally hard problem — requires
QBF calls.



Bounded Model Checking with SAT (BMC)

Recurrence Diameter: Least number of steps n such that all valid paths of
length n have at least one cycle.

Recurrence Diameter (rd) is an upper bound for the diameter d.

d=2 rd=4
/ @ This means that after rd steps, either:

All reachable states have been visited.

. . Any further steps must repeat a previously visited state.

(o) =




Bounded Model Checking with SAT (BMC)

General idea:
Fix a K

1.  Convert transition system to propositional encoding — unroll for path
length k

2. Convert temporal formula along the states to propositional encoding for k
length

3. Using SAT Solvers look for counterexamples
4. Found a counterexample :

Return counterexample
5. Else:

K= K+1

?
6. At some point, check if K > rd Return True, Else: K = K+1 [For safety property:
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Symbolic Model Checking without BDDs”™
Armin Biere!, Alessandro CimattiZ, Edmund Clarke!, Yunshan Zhu!

! Computer Science Department, Camegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, US.A
{Armin.Biere, Edmund.Clarke, Yunshan.2hu)ecs.cau.edu
2 Istinuto per Ja Ricerca Scientifica ¢ Tecnologica (IRST)
via Sommarive 18, 38055 Povo (TN), ltaly
cimattig@irst.itc.it

Abstract. Symbolic Model Checking (3, 14] has proven to be a powerfll tech-
nique for the verification of reactive systems. BDDs [2) have traditionally been
used a5 & symbolic representation of the system. In this paper we show how
boolean decisi dures, like Sthlmarck's Method [16] or the Davis & Put-

nam Procedure [7), can replace BDDs. This new technique avoids the space blow
wp of BDDs, gencrates counterexamples much faster, and sometimes speeds up
the verification. In addition, it prody mples of minimal length, We
introduce & bounded model checking procedure for LTL which reduces model
checking to propositional satisfiability. We sbow that bounded LTL model check-
ing can be dooe without a tableau construction. We have implemented a model
checker BMC, based on bounded model checking, and preliminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com-
pared to other formal verification techniques (¢.g. theorem proving) model checking is
largely sutomatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14), with boolean encoding of the finite state
machine, can handle more than 10°° states. BDDs 2], a ical form for bool
expressions, have traditionally been used as the underlying repr ion for symboli
model checkers [14). Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BD
during model checking become too large for currently available con = Sl =
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extensions to completeness

diameter checking,
k-induction,
interpolation —

SAT based model checking without unrolling:
[C3



