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Model Checking Algorithm — so far

M, s ⊧ F?

Algorithm
M S′ 

F
s . t . S′ ⊆ S, and M, s ⊧ F ∀s ∈ S′ 

All states s of the model M that satisfy F
Note that not necessarily I ⊆ S′ 



Model Checking Algorithm

M, s ⊧ F?

? M ⊧ FM

F

Yes, if M, s ⊧ F, ∀s ∈ I

No, if ∃s ∈ I s . t . M, s /⊧ F,
A path of the system M  
demonstrating that M 
can’t satisfy F

Bounded Model Checking with SAT (BMC)

Given: Transition system M, Temporal logic formula F, and a user-supplied time bound k

Output: UNSAT, if  unrolled upto  satisfies F 
               A counterexample if  unrolled upto  don’t satisfy F 

M k
M k



Model Checking Algorithm

M, s ⊧ F?

? SAT{Mk ∧ ¬Fk}Mk

Fk

Yes, there is a counterexample σ ⊧ Mk ∧ ¬Fk

Bounded Model Checking with SAT (BMC)

Given: Transition system M, Temporal logic formula F, and a user-supplied time bound k

Output: UNSAT, if  unrolled upto  satisfies F 
               A counterexample if if  unrolled upto  don’t satisfy F 

M k
M k

No,  if Mk ⊧ FK, ∀s ∈ I



Bounded Model Checking with SAT (BMC)

General idea: 

1.  Convert transition system to propositional encoding — unroll for path 
length k 

2. Convert temporal formula along the states to propositional encoding for 
 length. 

3.   Using SAT Solvers look for counterexamples

k



Bounded Model Checking with SAT (BMC)
Given two processes P and Q which share a resource R. 

1. If R is accessed by P, then property p is True. 

2. If R is accessed by Q, then property q is True.

s1, p s0 s2, q

s3, p, q
K = 1

Does ∀ □ ¬(p ∧ q)



s1, p s0 s2, q

s3, p, q

K = 1

Bounded Model Checking with SAT (BMC)

Mk = (¬p0 ∧ ¬q0) ∧ ((¬p0 ∧ ¬q0 ∧ p1 ∧ ¬q1) ∨ (¬p0 ∧ ¬q0 ∧ ¬p1 ∧ q1)) K = 1

Does ∀ □ ¬(p ∧ q)

¬Fk = p1 ∧ q1

SAT{Mk ∧ ¬Fk} UNSAT, Mk=1 ⊧ Fk=1



s1, p s0 s2, q

s3, p, q

K = 2

Bounded Model Checking with SAT (BMC)

Mk = (¬p0 ∧ ¬q0) ∧ ((¬p0 ∧ ¬q0 ∧ p1 ∧ ¬q1) ∨ (¬p0 ∧ ¬q0 ∧ ¬p1 ∧ q1)) K = 1

Mk = (¬p0 ∧ ¬q0) ∧ ((¬p0 ∧ ¬q0 ∧ p1 ∧ ¬q1) ∨ (¬p0 ∧ ¬q0 ∧ ¬p1 ∧ q1))

∧ (((p1 ∧ ¬q1 ∧ p2 ∧ q2) ∨ (p1 ∧ ¬q1 ∧ ¬p2 ∧ ¬q2)) ∨ (¬p1 ∧ q1 ∧ ¬p2 ∧ ¬q2))) K = 2

Does ∀ □ ¬(p ∧ q)



s1, p s0 s2, q

s3, p, q

Does ∀ □ ¬(p ∧ q) K = 2

Bounded Model Checking with SAT (BMC)

K = 2

¬F = ∃◊(p ∧ q) ¬Fk = p2 ∧ q2 SAT{Mk ∧ ¬Fk}

Mk = (¬p0 ∧ ¬q0) ∧ ((¬p0 ∧ ¬q0 ∧ p1 ∧ ¬q1) ∨ (¬p0 ∧ ¬q0 ∧ ¬p1 ∧ q1))

∧ (((p1 ∧ ¬q1 ∧ p2 ∧ q2) ∨ (p1 ∧ ¬q1 ∧ ¬p2 ∧ ¬q2)) ∨ (¬p1 ∧ q1 ∧ ¬p2 ∧ ¬q2)))



s1, p s0 s2, q

s3, p, q

Does ∀ □ ¬(p ∧ q) K = 2

Bounded Model Checking with SAT (BMC)

K = 2

¬Fk = p2 ∧ q2 SAT{Mk ∧ ¬Fk}

σ = ⟨p0 = 0,q0 = 0,p1 = 1,q1 = 0,p2 = 1,q2 = 1⟩ Mk /⊧ Fk so, s1, s3

Mk = (¬p0 ∧ ¬q0) ∧ ((¬p0 ∧ ¬q0 ∧ p1 ∧ ¬q1) ∨ (¬p0 ∧ ¬q0 ∧ ¬p1 ∧ q1))

∧ (((p1 ∧ ¬q1 ∧ p2 ∧ q2) ∨ (p1 ∧ ¬q1 ∧ ¬p2 ∧ ¬q2)) ∨ (¬p1 ∧ q1 ∧ ¬p2 ∧ ¬q2)))



Bounded Model Checking with SAT (BMC)
Two-bit counter

so s3, p, q

s1, q s2, p

Mk = (¬po ∧ ¬qo) ∧ (¬po ∧ ¬qo ∧ ¬p1 ∧ q1) ∧ (¬p1 ∧ q1 ∧ p2 ∧ ¬q2)

K = 3

F = ∀◊(p ∧ q) ¬F = ∃ □ ¬p ∨ ¬q

∧ ((p2 ∧ ¬q2 ∧ p3 ∧ ¬q3) ∨ (p2 ∧ ¬q2 ∧ p3 ∧ q3))

¬Fk = (¬po ∨ ¬qo) ∧ (¬p1 ∨ ¬q1) ∧ (¬p2 ∨ ¬q2) ∧ (¬p3 ∨ ¬q3)

Mk ∧ ¬Fk

so, s1, s2, s2

SAT{Mk ∧ ¬Fk}

σ = ⟨p0 = 0,q0 = 0,p1 = 0,q1 = 1,p2 = 1,q2 = 0,p3 = 1,q3 = 0⟩ Mk /⊧ Fk

What happens for K= 2? 



Bounded Model Checking with SAT (BMC)

Property -   ∀◊p Every path in M includes a state in which p is True. 

∃ □ ¬p An infinite path in which all states satisfy . ¬p A loop is needed! 

Lasso: A lasso is a finite path that consists of: 

A prefix: a finite sequence of transitions from the initial state. 

A loop: a back edge that loops from the last state back to some earlier state. 

Lassok(so, …, sk) :=
k

⋁
i=o

T(sk, si)

Mk ⊧ (∃ □ ¬p)k := Mk ∧ (Lassoi(so, …, sk) ∧
k

⋀
i=o

¬p(si)



Bounded Model Checking with SAT (BMC)

Lassok(so, …, sk) :=
k

⋁
i=o

T(sk, si)

so s3, p, q

s1, q s2, p

K =2

M2 ⊧ (∃ □ ¬p ∨ ¬q)2 :=

M
?
⊧ ∀◊(p ∧ q)

Mk ∧ (T(s2, s0) ∨ T(s2, s1) ∨ T(s2, s2)) ∧ (¬po ∨ ¬qo) ∧ (¬p1 ∨ ¬q1) ∧ (¬p2 ∨ ¬q2))

Mk ⊧ (∃ □ ¬p)k := Mk ∧ (Lassoi(so, …, sk) ∧
k

⋀
i=o

¬p(si)



Bounded Model Checking with SAT (BMC)

How big should be K?

For every model  and formula (LTL/CTL) F, there exists k, such that M

M ⊧K F → M ⊧ F

The minimal such k is the Completeness Threshold (CT).



Bounded Model Checking with SAT (BMC)

How big should be K?

For every model  and formula (LTL/CTL) F, there exists k, such that M

M ⊧K F → M ⊧ F

The minimal such k is the Completeness Threshold (CT).

Diameter of M

The diameter of a Kripke structure is the longest shortest path between 
any two reachable states. Formally:

Diameter(M) = Max
∀s,s′ ∈T

ShortestPathLength(s, s′ )



Bounded Model Checking with SAT (BMC)

Diameter of M

The diameter of a Kripke structure is the longest shortest path between 
any two reachable states. Formally:

Diameter(M) = Max
∀s,s′ ∈T

ShortestPathLength(s, s′ )

It measures how far apart any two states can be. 

It gives a worst case bound on how many steps are required to reach any states from another 
states.



Bounded Model Checking with SAT (BMC)

Diameter of M

The diameter of a Kripke structure is the longest shortest path between 
any two reachable states. Formally:

Diameter(M) = Max
∀s,s′ ∈T

ShortestPathLength(s, s′ )

S1 S2

S0 S3

Diameter is 2. 

What is the smallest k such that every state is reachable within k transitions?



Bounded Model Checking with SAT (BMC)

Diameter of M

The diameter of a Kripke structure is the longest shortest path between 
any two reachable states. Formally:

Diameter(M) = Max
∀s,s′ ∈T

ShortestPathLength(s, s′ )

Diameter is 2. 

What is the smallest k such that every state is reachable within k transitions?



Bounded Model Checking with SAT (BMC)

Diameter is 2. s5, p

Observe that Diameter is not a completeness threshold for arbitrary properties. 

Minimum k required for finding a counterexample for  ?∀◊p

s0 s1 s2 s3 s4

Shortest counterexample requires K=5

If F is a liveness property (something that must eventually hold, or hold infinitely, 
the Diameter is not a completeness threshold 

Mk ⊧ (∃ □ ¬p)k := Mk ∧ (Lassoi(so, …, sk) ∧
k

⋀
i=o

¬p(si)



Bounded Model Checking with SAT (BMC)

Diameter of M

Given a model M, the diameter of M is a completeness threshold for any property of the  
form ∀ □ p

Safety properties — something always holding. 

Counterexample — ( ) can we find a bad state in k step?∃◊¬p

For Safety property, d is a completeness threshold.



Bounded Model Checking with SAT (BMC)
Diameter of M The diameter of a Kripke structure is the longest shortest path between 

any two reachable states. Formally:

Diameter(M) = Max
∀s,s′ ∈T

ShortestPathLength(s, s′ )
How to check if  ? K

?
≥ d

State s is reachable in j steps: 

Rj(s) = ∃so, …, sj s . t . sj ∧ I(so) ∧
j−1

⋀
i=o

T(si, si+1)

K is greater than or equal to Diameter d if 

∀s : Rk+1(s) → ∃j ≤ k Rj(s)

Computationally hard problem — requires 
QBF calls. 

For all states, does there exists a path of length at most k?



Bounded Model Checking with SAT (BMC)
Recurrence Diameter: Least number of steps n such that all valid paths of 
length n have at least one cycle.  

Recurrence Diameter  is an upper bound for the diameter d. (rd)

 is the longest loop-free path in M.rd

S1 S2

S0 S3

d = 2 rd = 4
This means that after  steps, either: 

All reachable states have been visited. 

Any further steps must repeat a previously visited state. 

rd



Bounded Model Checking with SAT (BMC)
General idea: 
Fix a K 

1.  Convert transition system to propositional encoding — unroll for path 
length k 

2. Convert temporal formula along the states to propositional encoding for k 
length 

3. Using SAT Solvers look for counterexamples 

4.  Found a counterexample : 

   Return counterexample  

5.         Else: 

K= K+1 

6.   At some point, check  if   Return True, Else:  K = K+1 K
?
≥ rd For safety property.



extensions to completeness   
diameter checking,  

k-induction,  

interpolation – 

 SAT based model checking without unrolling: 
IC3


