COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Model Checking

Model Checking Algorithm

$$M, s \models F?$$

Note that not necessarily $I \subseteq S'$

Labelling Algorithm —

- 1. Does not scale well to large systems due to state explosion.
- 2. Memory-intensive as it maintains explicit labels for each state.

We need better data structure.

CTL Model Checking Algorithm — BDD basedAlgorithm

- 1. Input a Model M, and a CTL formula F.
- 2. Output S' (the set of states of M that satisfy the formula F.)

BDD — Binary Decision Diagrams.

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

$$F = (x \land y) \lor (\neg y \land z)$$

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

$$F = (x \land y) \lor (\neg y \land z)$$

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

Binary Decision Diagram

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Removal of duplicate leaves

Binary Decision Diagram

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Removal of duplicate tests

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Removal of duplicate tests

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	O	1
1	1	1	1

A binary decision diagram (BDD) is a data structure that is used to represent a Boolean function. $\{x, y, z, ..., \} \rightarrow \{0,1\}$

BDDs can be considered as a compressed representation of sets or relations.

$$F = (x \land y) \lor (\neg y \land z)$$

X	Y	Z	F
0	0	O	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Removal of duplicate sub-tree

RBDD — Reduced Binary Decision Diagrams

$$F = (x \land y) \lor (\neg y \land z)$$

$$F(x_1, x_2, x_3, x_4) = \begin{cases} 1 - \text{if even number of variables are 1} \\ 0 - \text{otherwise} \end{cases}$$

Create a ROBDD.

Assuming order to be x_1, x_2, x_3, x_4

$$F(x_1, x_2, x_3, x_4) = \begin{cases} 1 - \text{if even number of variables are 1} \\ 0 - \text{otherwise} \end{cases}$$

Create a ROBDD.

Assuming order to be x_1, x_2, x_3, x_4

$$F(x_1, x_2, x_3, x_4) = \begin{cases} 1 - \text{if even number of variables are 1} \\ 0 - \text{otherwise} \end{cases}$$

Create a ROBDD.

Assuming order to be x_3, x_1, x_4, x_2

$$F = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$$

Create a ROBDD.

Assuming order to be a_1, b_1, a_2, b_2

Number of nodes 2n+n+2

$$F = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$$

Create a ROBDD.

Assuming order to be a_1, a_2, b_1, b_2

Number of nodes

 $3 \times 2^{n} - 1$

For an n-bit comparator:

if we use the ordering $\langle a_1, b_1, a_2, b_2, ..., a_n, b_n \rangle$, the number of vertices will be 3n + 2.

if we use the ordering $\langle a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \rangle$, the number of vertices is $3 \times 2^n - 1$.

Moreover, there are boolean functions that have exponential size OBDDs for any variable ordering.

An example is the middle output (nth output) of a combinational circuit to multiply two n bit integers

Given an order, ROBDD is always unique

ROBDD Operations

Assuming two ROBDDs over same variable ordering.

Given argument functions f and g, and a binary operator,

- **APPLY** returns the function F < op> G.
- Works by traversing the argument graphs depth first.

Expanding for any variable x

$$F < op > G = \neg x(F|_{x=0} < op > G|_{x=0}) + x(F|_{x=1} < op > G|_{x=1})$$

ROBDD Operations

Assuming two ROBDDs over same variable ordering.

Given argument functions f and g, and a binary operator,

- **APPLY** returns the function F < op> G.
- Works by traversing the argument graphs depth first.

Expanding for any variable x

$$F(x_1, x_2, x_3, x_4)$$

$$G(x_1, x_2, x_3, x_4)$$

How about $F \vee G$?

ROBDD Operations (Apply)

- 1. Depth first search respect the ordering.
- 2. Reaching a terminal with a dominant value (e.g 1 for OR, o for AND) terminates recursion and returns an appropriately labeled terminal
- 3. Avoid multiple recursive calls on the same pair of arguments by a hash table

ROBDD Operations (Apply)

ROBDD Operations (Apply)

 $F \vee G$

ROBDD Operations (Restrict)

Effect to setting a function argument x_i to a constant 0/1

Depth-first traversal.

Redirecting arcs according to constant.

 $F[x_2 = 1]$

ROBDD Operations (Exists (x,F))

Compute ROBDD for $\exists xF$

1. Uses the identity:

$$\exists x F \equiv F[x = 0] \lor F[x = 1]$$

2. Realized using the restrict and apply functions

Apply(
$$\vee$$
, Restrict(x ,0, F), Restrict(x ,1, F))

$$\exists x_1, x_2 F \equiv ?$$

$$\exists x_1, x_2 F \equiv F(x_1, 1, x_3, ..., x_n) \lor F(x_1, 0, x_3, ..., x_n)$$

$$\exists x_1, x_2 F \equiv F(1, 1, x_3, ..., x_n) \lor F(0, 1, x_3, ..., x_n) \lor F(1, 0, x_3, ..., x_n) \lor F(0, 0, x_3, ..., x_n)$$

CTL model checking computes a set of states $[F_i]$ for every sub-formula F_i of the original formula F.

Sets of states will be represented using ROBDDs

That describes characteristic function of the set

CTL model checking computes a set of states $[F_i]$ for every sub-formula F_i of the original formula F.

Sets of states will be represented using ROBDDs

That describes characteristic function of the set

Set of states	Representation by	Representation by Boolean
Ø		0
{so}	(1,0)	$x_1 \cdot \neg x_2$
{s1}	(0,1)	$\neg x_1 . x_2$
{s2}	(0,0)	$\neg x_1 \cdot \neg x_2$
{s0,s1}	(1,0),(0,1)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot x_2$
{s0,s2}	(1,0),(0,0)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot \neg x_2$
{s1,s2}	(0,1),(00)	$\neg x_1 . x_2 + \neg x_1 . \neg x_2$
{s0,s1,s2}	(1,0),(0,1),(0,0)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot x_2 + \neg x_1 \cdot \neg x_2$

CTL model checking computes a set of states $[F_i]$ for every sub-formula F_i of the original formula F.

Sets of states will be represented using ROBDDs

That describes characteristic function of the set

Set of states	Representation by	Representation by Boolean
Ø		0
{so}	(1,0)	$x_1 \cdot \neg x_2$
{s1}	(0,1)	$\neg x_1 \cdot x_2$
{s2}	(0,0)	$\neg x_1 \cdot \neg x_2$
{s0,s1}	(1,0),(0,1)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot x_2$
{s0,s2}	(1,0),(0,0)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot \neg x_2$
{s1,s2}	(0,1),(00)	$\neg x_1 . x_2 + \neg x_1 . \neg x_2$
{s0,s1,s2}	(1,0),(0,1),(0,0)	$x_1 \cdot \neg x_2 + \neg x_1 \cdot x_2 + \neg x_1 \cdot \neg x_2$

ROBDD for the set $\{s_o, s_1\}$

Representing the transition relations.

- Transition relations $(\rightarrow) \subseteq S \times S$ are represented by ROBDDs on 2n variables.
- If the variables $x_1, ..., x_n$ describe the current state, and the variables $x_1', x_2', ... x_n'$ describe the next state.

• The good ordering is $x_1, x_1, x_2, x_2, \ldots, x_n, x_n'$ (interleaving).

X1	X2	X′1	X'2	->
0	O	O	0	1
O	O	1	0	1
O	1	O	0	1
1	O	O	1	1
O	O	O	1	O
• •	••	• •	••	• •

Representing the transition relations.

- Transition relations $(\rightarrow) \subseteq S \times S$ are represented by ROBDDs on 2n variables.
- If the variables $x_1, ..., x_n$ describe the current state, and the variables $x_1', x_2', ..., x_n'$ describe the next state. The good ordering is $x_1, x_1', x_2, x_2', ..., x_n, x_n'$ (interleaving).

X1	X2	X′1	X'2	->
O	O	O	O	1
O	O	1	0	1
O	1	O	O	1
1	О	O	1	1
O	O	0	1	0
• •	• •	• •	• •	• •

Representing the transition relations.

- Transition relations $(\rightarrow) \subseteq S \times S$ are represented by ROBDDs on 2n variables.
- If the variables $x_1, ..., x_n$ describe the current state, and the variables $x_1', x_2', ..., x_n'$ describe the next state. The good ordering is $x_1, x_1', x_2, x_2', ..., x_n, x_n'$ (interleaving).

But exploring Truth table will be expensive.

Can we learn F^{\rightarrow} without Truth table?

X1	X2	X'1	X'2	->
O	О	O	0	1
O	О	1	0	1
O	1	O	O	1
1	О	O	1	1
О	О	O	1	O
• •	• •	• •	••	••

Representing the transition relations.

- Transition relations $(\rightarrow) \subseteq S \times S$ are represented by ROBDDs on 2n variables.
- If the variables $x_1, ..., x_n$ describe the current state, and the variables $x_1', x_2', ..., x_n'$ describe the next state. The good ordering is $x_1, x_1', x_2, x_2', ..., x_n, x_n'$ (interleaving).

Can we learn F^{\rightarrow} without Truth table?

$$F^{\to} := (x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge x_2') \vee (\neg x_1 \wedge x_2 \wedge \neg x_1' \wedge \neg x_2') \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge \neg x_2') \vee (\neg x_1 \wedge \neg x_2 \wedge x_1' \wedge \neg x_2')$$

Convert F^{\rightarrow} to ROBDD.

Symbolic Model Checking — it represents and manipulates sets of states and transitions using symbolic expressions or formulas (like Boolean functions or Binary Decision Diagrams) rather than explicitly enumerating each state.

Specification
$$-F = \exists Np$$

Pre([p]) same as Pre(Y)

$$B_{Pre(Y)} = \text{exists } (X', \text{apply}(\land, F^{\rightarrow}, F_{Y'}))$$

Where *X'* is set of next state variables.

 F^{\rightarrow} is the ROBDD representing the transition relation.

 $F_{Y'}$ is the ROBDD representing the set Y with variables $x_1, x_2, ..., x_n$ renamed to $x_1', x_2', ..., x_n'$

ROBDD of F^{\rightarrow}

 $\exists \mathbf{N}x_1$

$$S = x_1 \cdot \neg x_2 + \neg x_1 \cdot x_2 + \neg x_1 \neg x_2$$

$$B_{Pre(Y)} = \text{exists } (X', \text{apply}(\land, F^{\rightarrow}, F_{Y'}))$$

$$F_{Y'} = ROBDD(s_0)$$

$$B_{Pre(Y)} = \text{exists } (X', \text{apply}(\land, F^{\rightarrow}, F_{Y'}))$$

$$B_{Pre(Y)} = exists(x'_1, x'_2, apply(\land, F^{\rightarrow}, F_{Y'})$$

ROBDD of F^{\rightarrow}

 $apply(\land, F^{\rightarrow}, F_{Y'})$

$$B_{Pre(Y)} = exists(x'_1, x'_2, apply(\land, F^{\rightarrow}, F_{Y'})$$

$$B_{Pre(Y)} =$$

 $restrict(x_1, x_2, F_1, 0, 0) \lor restrict(x_1, x_2, F_1, 1, 0) \lor restrict(x_1, x_2, F_1, 0, 1) \lor restrict(x_1, x_2, F_1, 1, 1)$

$$F_1 = apply(\land, F^{\rightarrow}, F_{Y'})$$

$$B_{Pre(Y)} = exists(x'_1, x'_2, apply(\land, F^{\rightarrow}, F_{Y'})$$

ROBDD of s_2

CTL Model Checking Algorithm —Symbolic Model Checking

```
Function Label(F, M){
    Case F of:
                True
                             return S
                False
                             return {}
                             return \{s \in S \mid p \in L(s)\}
                p
                \neg F_1
                             return \neg ROBDD of F_1
                             return apply(\land, ROBDD(F_1), ROBDD(F_2))
                F_1 \wedge F_2
                \exists NF_1
                             return pre(ROBDD(F_1), ROBDD(F^{\rightarrow}))
                             return Label\_EG(ROBDD(F_1), ROBDD(F^{\rightarrow}))
                \exists \Box F_1
                \exists F_1 U F_2 return Label\_EU(ROBDD(F_1), ROBDD(F_2), ROBDD(F^{\rightarrow}))
    End Case
```