COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https:/priyanka-golia.github.io/teaching/COL-750/index.html



Does

B o

Does

Satisfy

Model

Model Checking



Model Checking Algorithm

M,s E F?
M / / /
Algorithm > S StS QS,aﬂdM,SFFVSES
K ' All states s of the model M that satisfy F
Labelling Algorithm —

1. Does not scale well to large systems due to state explosion. We need better data

. . . . . . e structure.
2. Memory-intensive as it maintains explicit labels for each state.



CTL Model Checking Algorithm — BDD basedAlgorithm

1. Input —a Model M, and a CTL formula F.
2. Output — S’ (the set of states of M that satisfy the formula F.)

BDD — Binary Decision Diagrams.



BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
a Boolean function. _

BDDs can be considered as a compressed representation of sets or relations.

F=xAY)V(TyAZ)

» 1O |O O O X

~mlolO0o|—~ |~ OO

- O |= O |— O |— O N
oNoNGNL_NI®Na




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F=xAY) V(TyAZz)
X Y / F
O O O O
O O 1 1
O 1 O O
O 1 1 O
l O O O
O 1
1 O
1 1




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F=xAY)V(TyAZ)

Space: for n variables,
0(2n+1 _ 1)

» 1O O |O O | X

- = 10O |0 |— |— |O |0 (<

- O |= 0O |— O |— O N
o O O |—= O™




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F

1
—
=
>
<
—
<
—
|
<
>
A\
—

Removal of duplicate leaves

» 1O O |O O | X

- = 10O |0 |— |— |O |0 (<

- O |= 0O |— O |— O N
oNoNGRE_NI®Nay




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F

1
—
=
>
<
—
<
—
|
<
>
A\
—

Removal of duplicate tests

» 1O |O O O X

- = 10O |0 |— |— |O |0 (<

- O |= 0O |— O |— O N
oNoNGRE_NI®Nay




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F = (X N\ y) V (—ly A\ Z)
2] @ O
0 0 0 0 Removal of duplicate tests
) o) 1 1
O 1 0 O
0 | 1 1 | 0 Ck
’ 0 0 O

0 | 1 -
EE o)




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F=&xAy)V(myA2)
X | v | zZ F @
0 0 0 0 Removal of duplicate sub-tree ,* ~
0 | O 1 1 ':" y
0 1 0 | O Py
O 1 1 O ’
1 o] o] o d -
0 | 1 oo W
1 | 0o MRS
1 1 N




BDD — Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
+ Boolean function. MO

BDDs can be considered as a compressed representation of sets or relations.

F=xA y) V (—ly A 2)
vzl @ &
0 0 0O 0 Removal of duplicate sub-tree
0 0 1 1
0 1 0 0
ol 1] 1] o0 @

' O 0 O
1 0 ’ :
Enu ]




RBDD — Reduced Binary Decision Diagrams

F=XAYy)V(TyAZ)

_ — °
Removal of duplicate tests

Removal of duplicate sub-tree @




BDD — Binary Decision Diagrams

1 — if even number of variables are 1
F(xl, X2, X3, X4) —

0 — otherwise

Create a ROBDD.

Assuming order to be x;, x,, x5, X,



ROBDD — Reduced Ordered Binary Decision Diagrams

F(xl, X2, X3, X4) — {

Create a ROBDD.

1 — if even number of variables are 1

0 — otherwise

Assuming order to be x;, x,, x5, X,




BDD — Binary Decision Diagrams

F(xl, X2, X3, X4) — {

Create a ROBDD.

1 — if even number of variables are 1

0 — otherwise

Assuming order to be x5, x, x4, X,




ROBDD — Reduced Ordered Binary Decision Diagrams

F=(a < b)A(a, < by) a,
Create a ROBDD. . 4
Py N b
~

Assuming order to be a,, b,, a,, b, |
(
I
(

Qa-
)

\
|
|

Do,

J
Number of nodes 2un+n+2 |
/

1]




ROBDD — Reduced Ordered Binary Decision Diagrams

F=(a < b)A(a, < b))
Create a ROBDD.

Assuming order to be a,, a,, by, b,

Number of nodes 3 x2”—1




ROBDD — Reduced Ordered Binary Decision Diagrams

For an n-bit comparator:

if we use the ordering < a;,b,,a,,b,, ...,a,,b, > ,the number of vertices will be 3n + 2.

if we use the ordering < a;,a,,...,a,,b,b,...,b, >, the number of verticesis 3 X 2" — 1.

Moreover, there are boolean functions that have exponential size OBDDs for any variable
ordering.

An example is the middle output ( nth output) of a combinational circuit to multiply two n bit
Integers

Given an order, ROBDD is always unique



ROBDD Operations

Assuming two ROBDDs over same variable ordering.

Given argument functions f and g, and a binary operator,
* APPLY returns the function F <op> G.
* Works by traversing the argument graphs depth first.

Expanding for any variable x

F<op>G=-x(F|_,<op>G| _,))+x(F| _, <op>G]|_,)



ROBDD Operations

Assuming two ROBDDs over same variable ordering.

Given argument functions f and g, and a binary operator,

X
* APPLY returns the function F <op> G. // \
* Works by traversing the argument graphs depth first. }TZ T~
Expanding for any variable x lf -
o
\

How about F' vV G?




ROBDD Operations (Apply)

A B
A) 2 /1 :
X 1 /
) : B \
M. // \ ( g(/ A, B Ab’B“j
X, : v
l \9(3 Af 0295' /;’3 // \
l‘ _ ‘Lf\‘ // ’A'g')g?_
{ -’ ) ! -7
g ’ ! Ar By~
s o e B A /3 Re B
@ [o] ¥ 7N
/
6‘\1 @ Ag; B,_Z ’)a'b B4

1. Depth first search — respect the ordering.

2. Reaching a terminal with a dominant value (e.g 1 for OR, o for AND) terminates
recursion and returns an appropriately labeled terminal

3. Avoid multiple recursive calls on the same pair of arguments by a hash table



ROBDD Operations (Apply)




ROBDD Operations (Apply)

FVvG



ROBDD Operations (Restrict)

Effect to setting a function argument x; to a constant 0/1

Depth-first traversal.

Redirecting arcs according to constant.

X
o c\
/ \
4\
l7 \ ot /?(_j
%Lf g %(7
1) \L ,l \
O O 1




ROBDD Operations (Exists (x,F))

Compute ROBDD for dxF

1. Uses the identity:
AxF = Flx=0]V Flx = 1]

2. Realized using the restrict and apply functions

Apply( V , Restrict(x,0,F), Restrict(x,1,F))

dx, X, F =7

dx, ,F = F(x;,1,%3,...,x,) V F(x,0,x3, ..., x,)

3x;, 6,F = F(1,1,53, ..., x,) V F(O,1,55, ..., x) V F(1,0,%, ..., x,) V F(0,0,x;, ..., x,)



Implementing CTL Model Checking using BDDs

CTL model checking computes a set of states [F] for every sub-formula F; of the
original formula F.

Sets of states will be represented using ROBDDs

That describes characteristic function of the set

S
N\




Implementing CTL Model Checking using BDDs

CTL model checking computes a set of states [F] for every sub-formula F; of the

original formula F.

Sets of states will be represented using ROBDDs

N\

That describes characteristic function of the set

Set of states Representation by Representation by Boolean
2, 0
{so} (1,0) X1 -7
{s1} (0,1) XX
{s2} (0,0) e )
{sO,s1} (1,0),(0,1) X179 T SR,
{s0O,s2} (1,0),(0,0) X1 X9 + X X,
{s1,52} (G,1),(00) X . X X TX,
{s0O,s1,s2} (1,0),(0,1),(0,0) X)X+ X X+ X T




Implementing CTL Model Checking using BDDs

CTL model checking computes a set of states [F] for every sub-formula F; of the

original formula F.

Sets of states will be represented using ROBDDs

4
K4
4
4
4
L4
24
4
4
L4
L4
: '
L4
L4
K4
4
' -
l' ‘
P 4
P 4
P 4
P 4
Vs L4
V4 L4
¢ 4
X4 24

ROBDD for the set {s,, 5/ }

That describes characteristic function of the set

Set of states

Representation by

Representation by Boolean

% 0

{so} (1,0) 3 )

{s1} (0,1) A X

{s2} (0,0) AT
{s0O,s1} (1,0),(0,1) X1 T P %)
{s0O,s2} (1,0),(0,0) X1 X9 + X X,
{s1,52} (G,1),(00) X . X X TX,

{s0O,s1,s2} (1,0),(0,1),(0,0) X)X+ X X+ X T




Implementing CTL Model Checking using BDDs

Representing the transition relations.

* Transition relations (—) C S x S are represented by ROBDDs on 2n variables.

* If the variables x;, ..., x, describe the current state, and the variables x;, x,, ...x;

describe the next state.

* The good ordering is x;, X, Xy, X5, ..., X,, X, (interleaving).

@ X1 X2

X1 X2
O O O O
\ O O l O
O l O O
l O O l
O O O l




Implementing CTL Model Checking using BDDs

Representing the transition relations.

* Transition relations (—) C S x S are represented by ROBDDs on 2n variables.

* If the variables x;, ..., x, describe the current state, and the variables x|, x,, ...x;

describe the next state. The good ordering is x, x|, X5, X5, ..., X,, X, (interleaving).

X1 X2 X' X2

ROBDD of F™

O -0 0|0
o o|—-10|0
oNIONIONE _BE®
- =10 0 |O




Implementing CTL Model Checking using BDDs

Representing the transition relations.

* Transition relations (—) C S x S are represented by ROBDDs on 2n variables.

* If the variables x;, ..., x, describe the current state, and the variables x|, x,, ...x;

/

describe the next state. The good ordering is x, x|, X5, X5, ..., X,, X, (interleaving).

X1 X2 X" X2
But exploring Truth table will be expensive. 0 0 0 0
O O 1 O
Can we lear F-"without Truth table? 5 1 0 0
1 O O 1
O O O 1




Implementing CTL Model Checking using BDDs

Representing the transition relations.

* Transition relations (—) C S x S are represented by ROBDDs on 2n variables.

* If the variables x;, ..., x, describe the current state, and the variables x|, x,, ...x;

/

describe the next state. The good ordering is x, x|, X5, X5, ..., X,, X, (interleaving).

@ F7 = A% AT AX) V(X AXy AX A TX) V(X A7 A X A x) V(X A A XA Tx)

\ Convert F'~ to ROBDD.




Implementing CTL Model Checking using BDDs

Symbolic Model Checking — it represents and manipulates sets of states and
transitions using symbolic expressions or formulas (like Boolean functions or
Binary Decision Diagrams) rather than explicitly enumerating each state.

Specification — F = dNp
Pre([p]) same as Pre(Y)
Bp,oy) = exists (X', apply( A, F7, Fy))
Where X'is set of next state variables.
F~ is the ROBDD representing the transition relation.

Fy. is the ROBDD representing the set Y with variables

/

X{5 Xy, ..., X, renamed to xj, X5, ..., X,



Symbolic Model Checking

S
N\

INx,

S =X1._'X2+ _'.xl.xZ+_'xl_'x2

BPre(Y) = exists (X, apply( AL F, FY’)) // \ ’




Symbolic Model Checking
Bp,.(y) = exists (X', apply( A, F, Fy))

Bpo(r) = exists(xy, Xy, apply( A , F—, Fy)

% |
l,r/
! X(\
X /
/ \ { | g Koy
, Xy = \
e g
| 4
Fy, = ROBDD(s,) ROBDD of F~

apply( A, F~, Fy)



Symbolic Model Checking By, = exists(x{, x5, apply( A , F~, Fy)

BPre(Y) —
restrict(x,, x,, I',0,0) V restrict(x,, x,, F';,1,0) V restrict(x, x,, F',0,1) V restrict(x;, x,, F,1,1)
%)
l ((/ X |
?<( /
7 \ /,’ \
! s X . | I
[O - / \ o | restrict(x, x,, F;,0,0) V restrict(x,, x,, F;,0,1)
\ /
T~__ X , restrict(xy, x,, 1,,0,1) =0
\L ) 4 | o
\

restrict(x, x,, F;,1,0)

Fl — apply(/\aF_)aFY’)



Symbolic Model Checking

Bp,or) = exists(xy, X5, apply( A, F~, Fy)

/ \
/
! ROBDD of s,




CTL Model Checking Algorithm —Symbolic Model Checking

Function Label(F, M)§

Case F of :
True return S
False return {}
p return{s € S|p € L(s)}
- F, return " ROBDD of F,

F,AF, returnapply( A,ROBDD(F,), ROBDD(F,))
ANF, return pre(ROBDD(F|), ROBDD(F ™))
d[]F, return Label_EG(ROBDD(F;), ROBDD(F ™))

dF,UF, return Label_EU(ROBDD(F;), ROBDD(F,), ROBDD(F ™))
End Case



