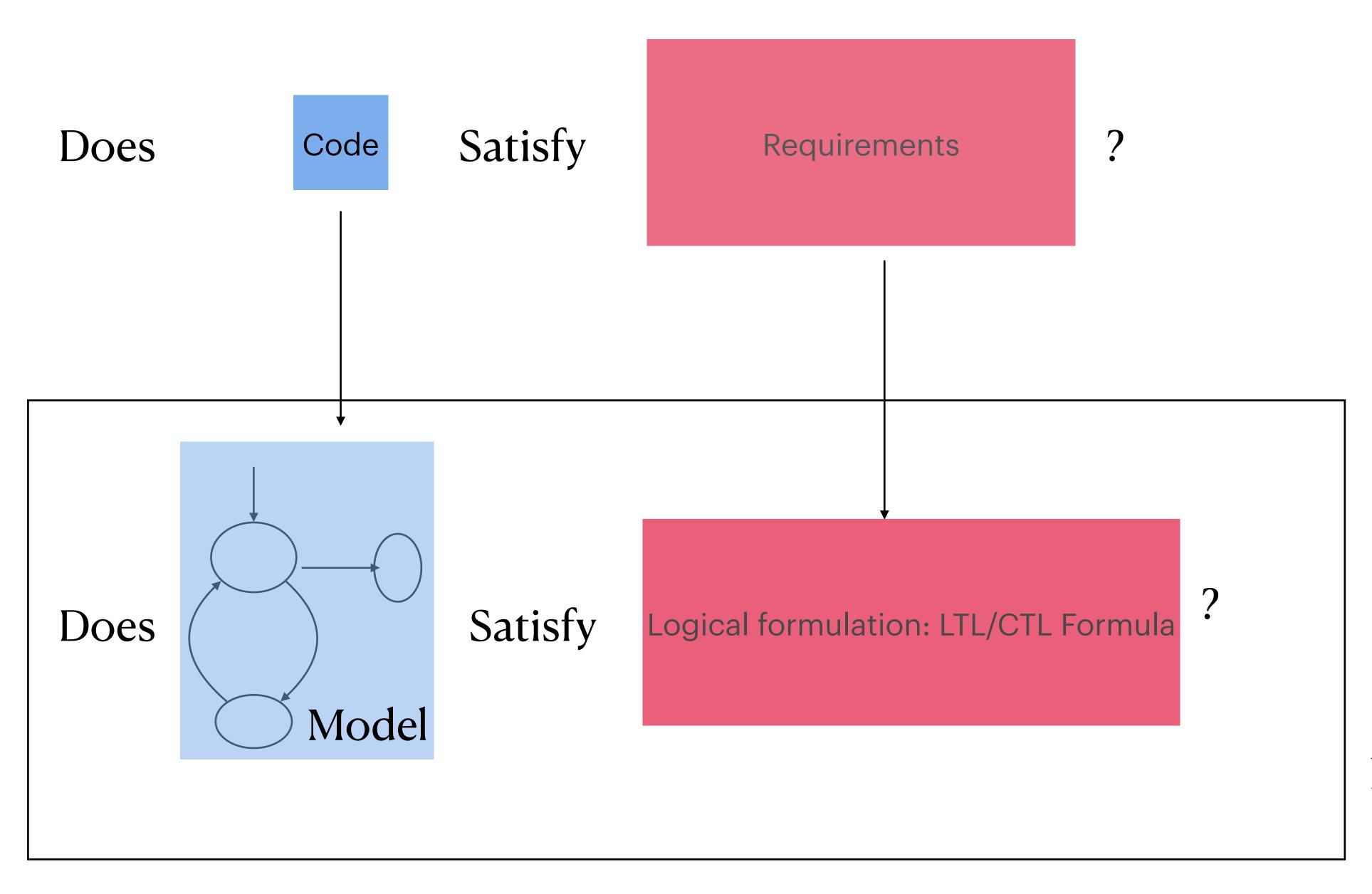
COL:750

Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

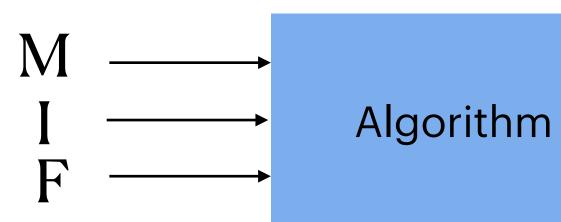
Instructor: Priyanka Golia



Model Checking

Model Checking Algorithm

 $M, s \models F?$



Yes, if $M, s \models F, \forall s \in I$ No, if $\exists s \in I s . t . M, s \not\models F$, A path of the system M demonstrating that M can't satisfy F

Model Checking Algorithm

 $M, s \models F?$



$S' \quad s \, . \, t \, . \, S' \subseteq S$, and $M, s \models F \forall s \in S'$ All states s of the model M that satisfy F

Note that not necessarily $I \subseteq S'$

- Input a Model M, and a CTL formula F. 1.
- Output -S' (the set of states of M that satisfy the formula F.) 2.

Key idea — build from sub-formulas.

- Label the states of M with the sub-formulas of F that are satisfied at the state. 1. Starting with smallest sub formula and working towards F. 2.

$$F = (\forall \Box (p$$

$$q \qquad \forall \diamondsuit q \qquad p \qquad p$$

- $\rightarrow \forall (Q))$
- $\rightarrow \forall \Diamond q \qquad \forall \Box (p \rightarrow \forall \Diamond q)$

- Input a Model M, and a CTL formula F. 1.
- Output -S' (the set of states of M that satisfy the formula F.) 2.

Key idea — build from sub-formulas.

- 1. Constructs the set of states where the formula holds: $[F] := s \in S \text{ s.t. } M, s \models F$
- 2. Then, compare the [*F*] with the set of initial states : $I \subseteq [F]$?

Compute [F] in "bottom-up" on the structure of formula – computing [F_i] for each sub-formula F_i of F.

$$F = (\forall \Box (p \to \forall \Diamond q)) \qquad q \qquad \forall \Diamond q$$

$$p \qquad p \to \forall \Diamond q \qquad \forall \Box (p \to \forall \Diamond q)$$

Compute [F] in "bottom-up" on the structure of formula – computing [F_i] for each sub-formula F_i of F.

How to compute $[F_i]$?

Recall given $M := \langle S, I, R, L \rangle$ Case Analysis \perp – no states are labelled with \perp P – label s with p if $p \in L(s)$ $\neg F_1$ – label s with $\neg F_1$ if s is NOT already labelled with F_1 $F_1 \wedge F_2$ – label s with $F_1 \wedge F_2$ if s is already labelled both F_1 and F_2

 $[\perp] = \{ \}$

 $[p] = \{s \mid p \in L(s)\}$

 $[\neg F_1] = S \setminus [F_1]$ $[F_1 \land F_2] = [F_1] \cap [F_2]$

Recall given $M := \langle S, I, R, L \rangle$ Case Analysis

 $\exists NF_1$

If any state s is labelled with F_1 if one of its successor is labelled with F_1

 $[\exists NF_1] = \{s \in S \mid \exists s' < s, s' > \in R \land s' \in [F_1]\}$

 $[\exists NF_1]$ is called pre-image of $[F_1]$ (pre($[F_1]$)

Case Analysis Recall given $M := \langle S, I, R, L \rangle$

- $\exists \Box F$ $\Box F \equiv F \land \mathbf{N}(\Box F)$ $\exists \Box F \equiv F \land \exists \mathbf{N}(\exists \Box F)$
- Label any state with $\exists \Box F_1$ if
- it is labelled with F_1 and one of its successor is labelled with $\exists \Box F_1$ 1. until there is no change.

 $[\exists \Box F] = [F] \cap pre([\exists \Box F])$

Case Analysis Recall given $M := \langle S, I, R, L \rangle$

$$\exists \Box F$$
$$\Box F \equiv F \land \mathbf{N}(\Box F)$$
$$\exists \Box F \equiv F \land \exists \mathbf{N}(\exists \Box F) \qquad [\exists \Box F] = [F]$$

We can compute this inductively.

$$\begin{split} X_1 &= [F_1] \\ X_2 &= X_1 \cap pre(X_1) \\ \cdots \\ X_{j+1} &= X_j \cap pre(X_j) \end{split}$$

$X_{j+1} \subseteq X_j$ for every $j \ge 0$, thus a fix point always exists.

Case Analysis Recall given $M := \langle S, I, R, L \rangle$

 $\exists F_1 U F_2$ $F_1 \mathbf{U} F_2 \equiv F_2 \vee (F_1 \wedge \mathbf{N}(F_1 \mathbf{U} F_2))$ $\exists F_1 \mathbf{U} F_2 \equiv F_2 \lor (F_1 \land \exists \mathbf{N} \exists (F_1 \mathbf{U} F_2))$ Label any state with $\exists F_1 U F_2$ if

- it is labelled with F_2 , or 1.
- it is labelled with F_1 and one of its successor is labelled with $\exists F_1 U F_2$ 2. until there is no change.

 $[\exists F_1 \mathbf{U} F_2] = [F_2] \cup ([F_1] \cap pre([\exists (F_1 \mathbf{U} F_2)]))$

Case Analysis Recall given $M := \langle S, I, R, L \rangle$

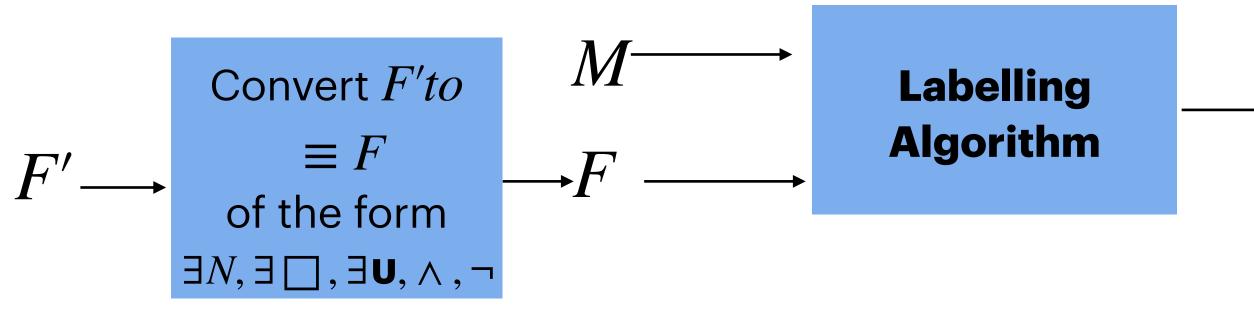
 $\exists F_1 U F_2$ $F_1 \mathbf{U} F_2 \equiv F_2 \vee (F_1 \wedge \mathbf{N}(F_1 \mathbf{U} F_2))$ $\exists F_1 \mathbf{U} F_2 \equiv F_2 \lor (F_1 \land \exists \mathbf{N} \exists (F_1 \mathbf{U} F_2))$ We can compute this inductively. $X_1 = [F_2]$ $X_2 = X_1 \cup ([F_1] \cap pre(X_1))$ $X_{j+1} = X_j \cup ([F_1] \cap pre(X_j))$

$[\exists F_1 \mathbf{U} F_2] = [F_2] \cup ([F_1] \cap pre([\exists (F_1 \mathbf{U} F_2)]))$

Since $X_{i+1} \supseteq X_i$ for every $j \ge 0$, thus a fix point always exists.

Binary operator \bot , \neg , \land Form an adequate set of CTL formulas. Temporal operator $\exists N, \exists \Box, \exists U$

Any given CTL formula can be converted to equivalent CTL formula using only these operator.



 $M, s \models F?$

 $\rightarrow S' \quad s.t.S' \subseteq S, and M, s \models F \forall s \in S'$ All states s of the model M that satisfy F

Note that not necessarily $I \subseteq S'$

Function Label(F, M)

p

Case F of :

True return S False return {} return { $s \in S \mid p \in L(s)$ } $\neg F_1$ return $S \setminus Label(F_1)$ $F_1 \wedge F_2$ return $Label(F_1) \cap Label(F_2)$ $\exists \mathbf{N}F_1$ return pre($Label(F_1)$) $\exists \Box F_1$ return *Label_EG(Label(F_1))* $\exists F_1 UF_2$ return *Label_EU(Label(F_1), Label(F_2))*

End Case

 $[\exists NF_1] = pre([F_1])$

 $pre([F_1])$ {

 $X = \{\}$

For each s' in $[F_1]$ do:

Return X

 $[\exists NF_1] = \{s \in S \mid \exists s' < s, s' > \in R \land s' \in [F_1]\}$

- For each *s* in *S* do:
 - If $\langle s, s' \rangle \in R$:
 - $X = X \cup s$

 $[\exists \Box F_1]$ $[\exists \Box F] = [F] \cap pre([\exists \Box F])$

- $Label_EG([F_1])$ {
 - $\mathbf{X} = [F_1]$ $Y = \{\}$

 - Return X

- While $X \neq Y$ do:
 - $\mathbf{Y} = \mathbf{X}$
 - $X = X \cap pre(X)$

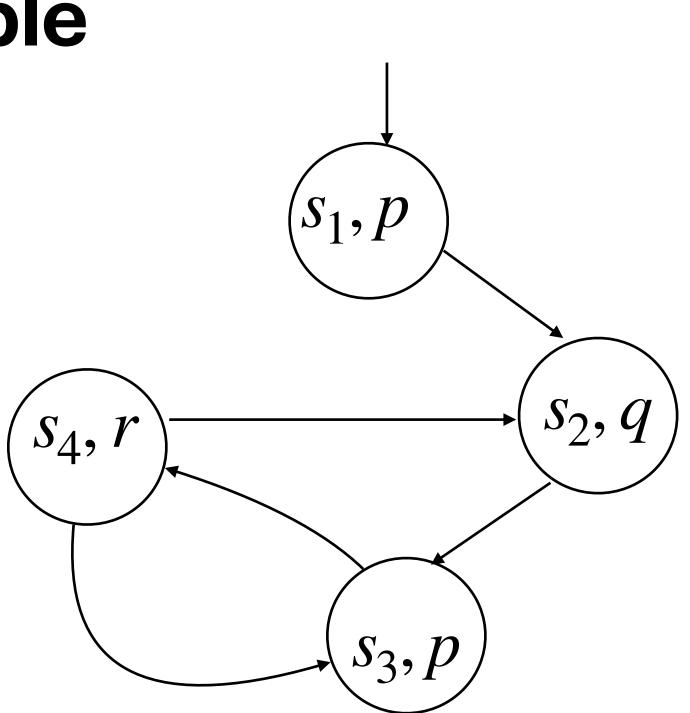
 $[\exists F_1 \cup F_2] \quad [\exists F_1 \cup F_2] = [F_2] \cup ([F_1] \cap pre([\exists (F_1 \cup F_2)]))$

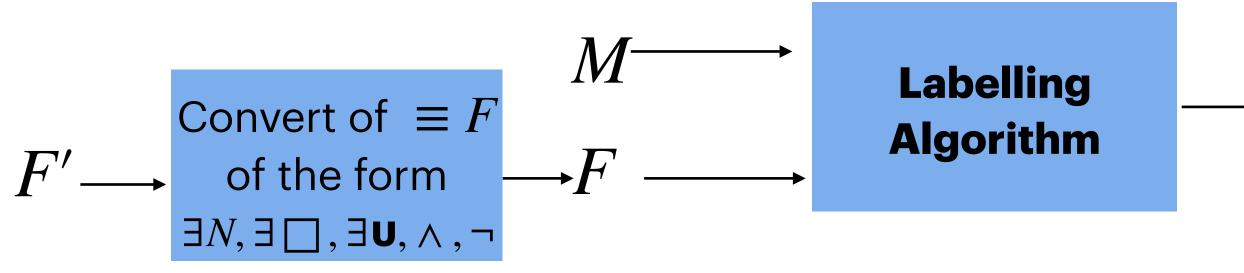
- $Label_EU([F_1], [F_2]) \{$ $\mathbf{X} = [F_2]$
- $\mathbf{Y} = \mathbf{S}$

 - $X = X \cup ([F_1] \cap pre(X))$ Return X

- While $X \neq Y$ do:
 - $\mathbf{Y} = \mathbf{X}$

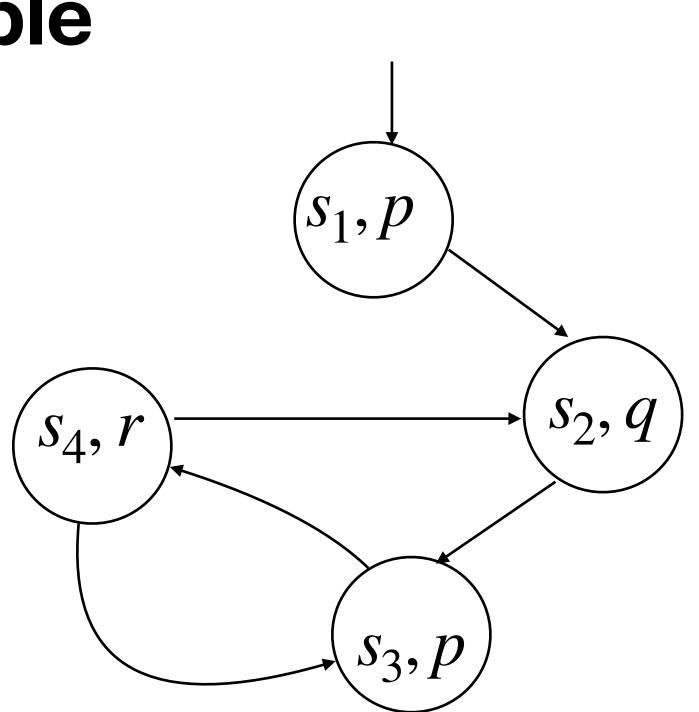
$F' = (\forall \Box (p \to \forall \Diamond q))$

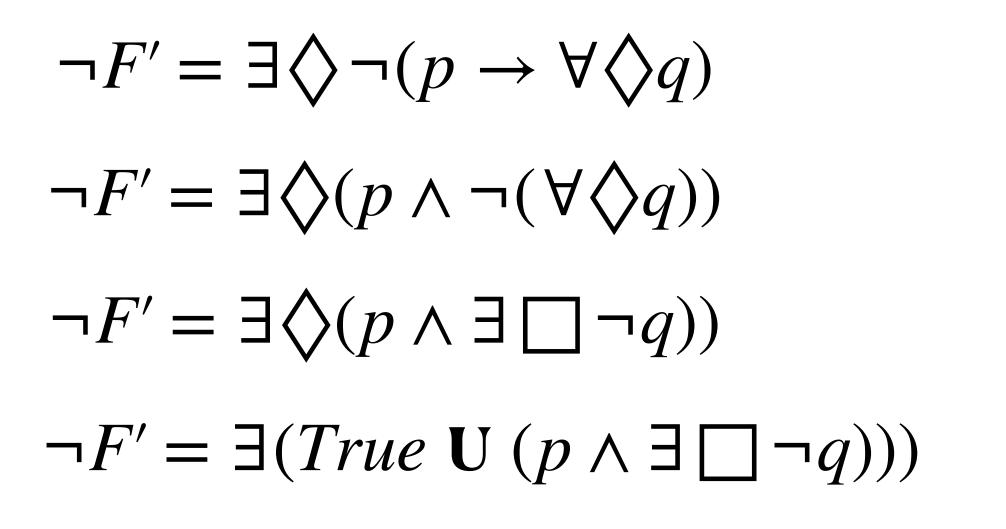




 $S' \quad s \, . \, t \, . \, S' \subseteq S$, and $M, s \models F \forall s \in S'$

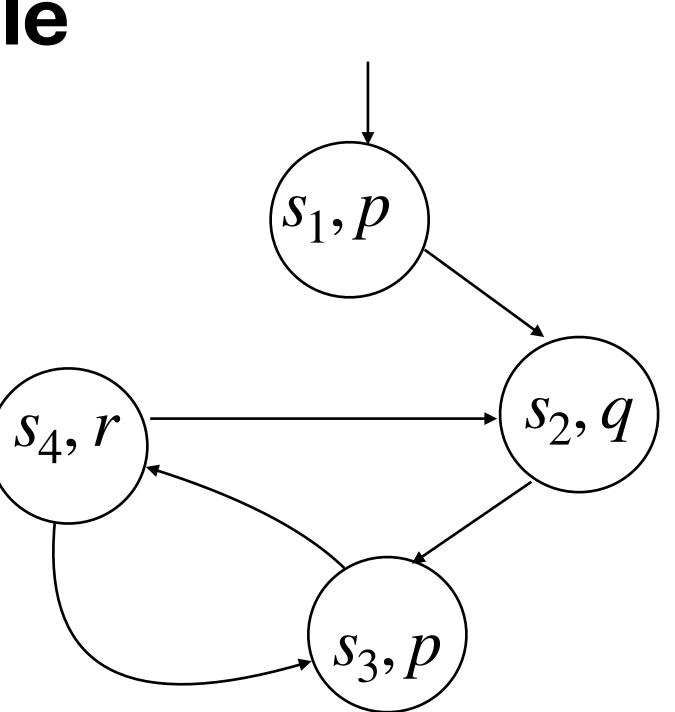
$F' = (\forall \Box (p \to \forall \Diamond q))$





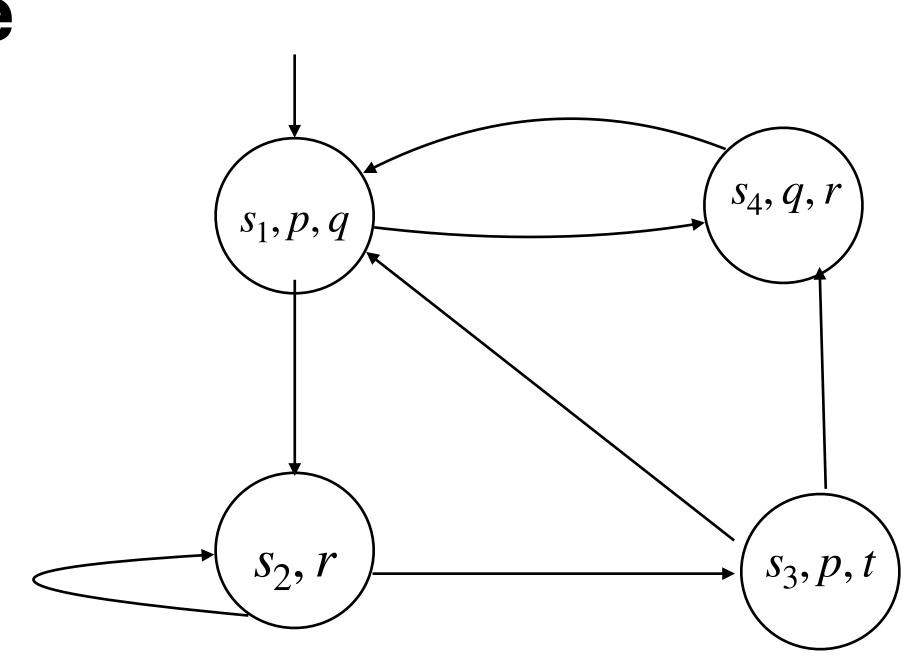
$$\neg F' = True \ \mathbf{U} \ (p \land \exists \Box \neg q))$$
$$F = \neg(\neg F')$$

 $[True] = \{1, 2, 3, 4\}$ $[\neg q] = \{1,3,4\}$ $[\exists \Box \neg q] = \{3, 4\}$ $[p] = \{1,3\}$ $[p \land \exists \Box \neg q] = \{3\}$ $[True \mathbf{U}(p \land \exists \Box \neg q)] = \{1, 2, 3, 4\}$ $[\neg F'] = \{1, 2, 3, 4\}$ $[F] = \{ \}$



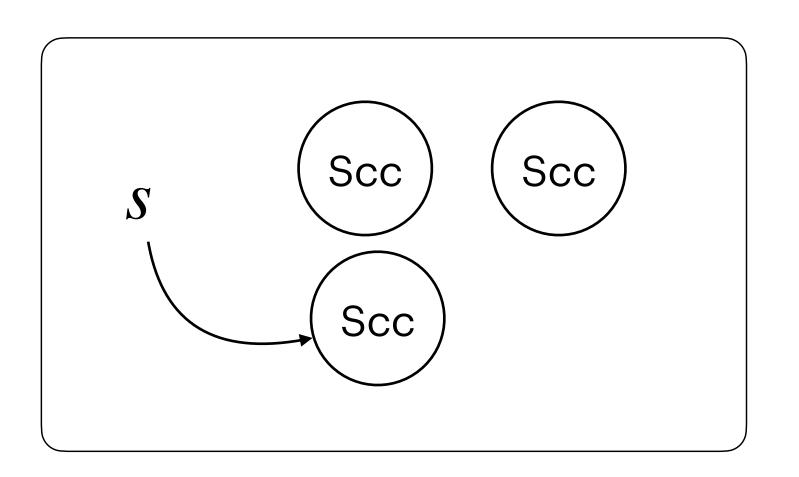
 $F = \forall \Box (\forall \diamondsuit q)$ $R = \mathbf{NN}(r)$ $S = \forall \Box (\exists \diamondsuit (p \lor r))$

Exercise: find out the complexity of the labelling algorithm in terms of number of connectives of the formula (say f). number of states of the model (say |S|) number of transitions in the model (say |R|). It will be linear in f, and quadratic in M



How to improve *Label_EG* algorithm? Recall st

- 1. Restrict the graph to states satisfying F_1 .
- 2. Find the maximal strongly connected components (SCC)
- 3. Use backward breadth first search on the restricted graph to find any state that can reach SCC.



Recall strongly connected components. Satisfying F_1 .