
Instructor: Priyanka Golia

COL:750
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Does Code Satisfy

Requirements

?

Logical formulation: LTL/CTL Formula

?Does Satisfy

Model
Model Checking

Model Checking Algorithm

M, s ⊧ F?

Algorithm
M
I
F

Yes, if M, s ⊧ F, ∀s ∈ I

No, if ∃s ∈ I s . t . M, s /⊧ F,
A path of the system M
demonstrating that M
can’t satisfy F

Model Checking Algorithm

M, s ⊧ F?

Algorithm
M S′￼

F
s . t . S′￼ ⊆ S, and M, s ⊧ F ∀s ∈ S′￼

All states s of the model M that satisfy F
Note that not necessarily I ⊆ S′￼

CTL Model Checking Algorithm — Labelling Algorithm

1. Input — a Model M, and a CTL formula F.

2. Output — S’ (the set of states of M that satisfy the formula F.)

Key idea — build from sub-formulas.

1. Label the states of M with the sub-formulas of F that are satisfied at the state.

2. Starting with smallest sub formula and working towards F.

F = (∀ □ (p → ∀◊q))

q ∀◊q p p → ∀◊q ∀ □ (p → ∀◊q)

CTL Model Checking Algorithm — Labelling Algorithm

1. Input — a Model M, and a CTL formula F.

2. Output — S’ (the set of states of M that satisfy the formula F.)

Key idea — build from sub-formulas.

F = (∀ □ (p → ∀◊q)) q ∀◊q p p → ∀◊q ∀ □ (p → ∀◊q)

1. Constructs the set of states where the formula holds:

2. Then, compare the with the set of initial states :
[F] := s ∈ S s.t. M, s ⊧ F

[F] I ⊆ [F]?

Compute in “bottom-up” on the structure of formula — computing for each
 sub-formula of F.

[F] [Fi]
Fi

CTL Model Checking Algorithm — Labelling Algorithm

Compute in “bottom-up” on the structure of formula — computing for each
 sub-formula of F.

[F] [Fi]
Fi

How to compute ? [Fi]

Case Analysis

 — no states are labelled with ⊥ ⊥

P — label with p if s p ∈ L(s)

Recall given M := < S, I, R, L >

 — label with if s is already labelled both and F1 ∧ F2 s F1 ∧ F2 F1 F2

 — label with if s is NOT already labelled with ¬F1 s ¬F1 F1

[⊥] = {}

[p] = {s |p ∈ L(s)}

[¬F1] = S∖[F1]

[F1 ∧ F2] = [F1] ∩ [F2]

CTL Model Checking Algorithm — Labelling Algorithm

Case Analysis Recall given M := < S, I, R, L >

∃NF1

If any state is labelled with if one of its successor is labelled with s F1 F1

[∃NF1] = {s ∈ S |∃s′￼ < s, s′￼ > ∈ R ∧ s′￼∈ [F1]}

 is called pre-image of (pre([∃NF1] [F1] [F1])

CTL Model Checking Algorithm — Labelling Algorithm

Case Analysis Recall given M := < S, I, R, L >

∃ □ F
□ F ≡ F ∧ N(□F)
∃ □ F ≡ F ∧ ∃N(∃ □ F)

[∃ □ F] = [F] ∩ pre([∃ □ F])

Label any state with if

1. it is labelled with and one of its successor is labelled with
until there is no change.

∃ □ F1

F1 ∃ □ F1

CTL Model Checking Algorithm — Labelling Algorithm

Case Analysis Recall given M := < S, I, R, L >

∃ □ F
□ F ≡ F ∧ N(□F)
∃ □ F ≡ F ∧ ∃N(∃ □ F) [∃ □ F] = [F] ∩ pre([∃ □ F])

We can compute this inductively.

..

X1 = [F1]
X2 = X1 ∩ pre(X1)

Xj+1 = Xj ∩ pre(Xj)

Since for every , thus a fix point always exists.Xj+1 ⊆ Xj j ≥ 0

CTL Model Checking Algorithm — Labelling Algorithm

Case Analysis Recall given M := < S, I, R, L >

∃F1UF2

F1UF2 ≡ F2 ∨ (F1 ∧ N(F1UF2))

∃F1UF2 ≡ F2 ∨ (F1 ∧ ∃N ∃(F1UF2))

[∃F1UF2] = [F2] ∪ ([F1] ∩ pre([∃(F1UF2)]))

Label any state with if

1. it is labelled with , or

2. it is labelled with and one of its successor is labelled with
until there is no change.

∃F1UF2

F2

F1 ∃F1UF2

CTL Model Checking Algorithm — Labelling Algorithm

Case Analysis Recall given M := < S, I, R, L >

We can compute this inductively.

..

X1 = [F2]
X2 = X1 ∪ ([F1] ∩ pre(X1))

Xj+1 = Xj ∪ ([F1] ∩ pre(Xj))

Since for every , thus a fix point always exists.Xj+1 ⊇ Xj j ≥ 0

∃F1UF2

F1UF2 ≡ F2 ∨ (F1 ∧ N(F1UF2))

∃F1UF2 ≡ F2 ∨ (F1 ∧ ∃N ∃(F1UF2)) [∃F1UF2] = [F2] ∪ ([F1] ∩ pre([∃(F1UF2)]))

CTL Model Checking Algorithm — Labelling Algorithm

Binary operator
Temporal operator

⊥ , ¬, ∧
∃N, ∃ □ , ∃U

Form an adequate set of CTL formulas.

Any given CTL formula can be converted to equivalent CTL formula using only
these operator.

M, s ⊧ F?

Labelling
Algorithm

S′￼ s . t . S′￼ ⊆ S, and M, s ⊧ F ∀s ∈ S′￼

All states s of the model M that satisfy F
Note that not necessarily I ⊆ S′￼

F′￼

Convert

of the form

F′￼to
≡ F

∃N, ∃ □ , ∃U, ∧ , ¬

F
M

CTL Model Checking Algorithm — Labelling Algorithm

Function Label(){

 Case

 True return S
 False return {}
 p return {
 return
 return
 return pre()
 return
 return
 End Case

F, M

F of :

s ∈ S |p ∈ L(s)}
¬F1 S∖Label(F1)
F1 ∧ F2 Label(F1) ∩ Label(F2)
∃NF1 Label(F1)
∃ □ F1 Label_EG(Label(F1))
∃F1UF2 Label_EU(Label(F1), Label(F2))

CTL Model Checking Algorithm — Labelling Algorithm

[∃NF1] = pre([F1]) [∃NF1] = {s ∈ S |∃s′￼ < s, s′￼ > ∈ R ∧ s′￼∈ [F1]}

pre({

X = {}

For each in do:

For each do:

If :

Return X

}

[F1])

s′￼ [F1]

s in S

< s, s′￼ > ∈ R

X = X ∪ s

CTL Model Checking Algorithm — Labelling Algorithm

[∃ □ F1]

({

X =
Y = {}

While do:

Y = X

Return X

}

Label_EG [F1])

[F1]

X ≠ Y

X = X ∩ pre(X)

[∃ □ F] = [F] ∩ pre([∃ □ F])

CTL Model Checking Algorithm — Labelling Algorithm

[∃F1UF2]

({

X =
Y = S

While do:

Y = X

Return X

}

Label_EU [F1], [F2])

[F2]

X ≠ Y

X = X ∪ ([F1] ∩ pre(X))

[∃F1UF2] = [F2] ∪ ([F1] ∩ pre([∃(F1UF2)]))

Labelling Algorithm — Example

F′￼ = (∀ □ (p → ∀◊q))

s1, p

s2, q

s3, p

s4, r

Labelling
Algorithm

S′￼ s . t . S′￼ ⊆ S, and M, s ⊧ F ∀s ∈ S′￼

F′￼

Convert of
of the form

≡ F

∃N, ∃ □ , ∃U, ∧ , ¬
F
M

Labelling Algorithm — Example

F′￼ = (∀ □ (p → ∀◊q))

s1, p

s2, q

s3, p

s4, r

¬F′￼ = ∃◊¬(p → ∀◊q)

¬F′￼ = ∃◊(p ∧ ¬(∀◊q))

¬F′￼ = ∃◊(p ∧ ∃ □ ¬q))

¬F′￼ = ∃(True U (p ∧ ∃ □ ¬q)))

Labelling Algorithm — Example

s1, p

s2, q

s3, p

s4, r

¬F′￼ = True U (p ∧ ∃ □ ¬q))
F = ¬(¬F′￼)

[True] =

 =

 =

[F] =

{1,2,3,4}
[¬q] = {1,3,4}

[∃ □ ¬q] {3,4}
[p] = {1,3}
[p ∧ ∃ □ ¬q] {3}
[TrueU(p ∧ ∃ □ ¬q)] = {1,2,3,4}

[¬F′￼] = {1,2,3,4}
{}

Labelling Algorithm — Example

s1, p, q

s3, p, ts2, r

s4, q, r

F = ∀ □ (∀◊q)

R = NN(r)

S = ∀ □ (∃◊(p ∨ r))

Exercise: find out the complexity of the labelling algorithm in terms of
number of connectives of the formula (say f).
number of states of the model (say |S|)
number of transitions in the model (say |R|).

It will be linear in f, and quadratic in M

How to improve algorithm?Label_EG
Recall strongly connected components.

1. Restrict the graph to states satisfying .

2. Find the maximal strongly connected components (SCC)

3. Use backward breadth first search on the restricted graph to
 find any state that can reach SCC.

F1

Scc Scc

Scc

s

