COL:750

Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Acknowledgment: content of today's lecture was inspired/taken from Prof. B. Srivathsan lectures

Instructor: Priyanka Golia

Model Checking

How to model ATM behavior?

How to model a vending machine behavior?

Transition systems: states, actions, transitions

Hardware $Y = \neg (X \oplus R)$

Hardware $Y = \neg (X \oplus R)$

$$X = 0, R = 0, Y = 1$$

$$X = 1, R = 0, Y = 0$$

$$X = 0, R = 1, Y = 0$$

$$X = 1, R = 1, Y = 1$$

Data-dependent programs

Program Graph

Data-dependent programs

Data-dependent programs

 l_1 : while (x > 0) l_2 : *If*(*x* mod 2 = = 0) then x = x - 2, else x = x - 1

Transition system with initial condition

$$\longrightarrow \boxed{l_1 : x = 3} \longrightarrow \boxed{l_2 : x = 3} \qquad \boxed{l_1 : x = 2}$$

$$x = 3$$

for the joint behaviour?

Initially x = 0

Modeling Concurrent Systems: Exercise

Initially
$$x = 3$$

 $[q_2: x = 6]$

Shared variables

Is the value of x always between 0 and 200? No!!!

Shared variables — Mutual exclusion

simultaneously

How do we model the protocol for mutual exclusion?

Mutual Exclusion: No two processes can access the resource (variables, printers, ..)

Exercise!!

Bar Code Reading (BCR) Booking Program (BP)

check_price, print_cmd: Shared actions (also called handshaking actions)

- Printer

BPR || BP || P

Train Crossing: Automatic Gate Closing

Train

Controller

Gate

Independent

Shared variables Shared actions Mutual exclusion Handshake: $TS_1 || TS_2 || T_3 ...$

Interleaving: $TS_1 \parallel TS_2 \parallel TS_2 \parallel T_3 \dots$ $TS(PG_1 || |PG_2 || |PG_3...)$

Model-checker will automatically check if system satisfies requirements

NuSMV : New Symbolic Model Verifier

https://nusmv.fbk.eu/

: New Symbolic Model Verifier https://nusmv.fbk.eu/ NuSMV

Hardware $Y = \neg (X \oplus R)$

Var

X: Boolean, R: Boolean

Assign

Init(R):= False, Next(R):= x xor r

