COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

LTL: Semantics

We interpret our temporal formulae in a discrete, linear model of time.

$$M=< N, I>$$
 , where N is a set of Natural number and $I:N\mapsto 2^\Sigma$
 I maps each Natural number (representing a moment in time) to a set of propositions

Let
$$\pi = a_0, a_1, a_2, \dots$$
 $\pi(i) = a_i$ AP at i^{th} level.
$$\pi^i = a_i, a_{i+1}, a_{i+2}, \dots$$
 Suffix of π

LTL: Semantics Semantics with respect to a given Trace (or Path) π

Let
$$\pi = a_0, a_1, a_2, \dots$$
 $\pi(i) = a_i$ AP at i^{th} level. $\pi^i = a_i, a_{i+1}, a_{i+2}, \dots$ Suffix of π

$$\pi \models p \qquad \text{Iff } p \in \pi(0) \qquad \pi^i \models p \quad \text{Iff } p \in \pi(i)$$

$$\pi \models \mathbf{N} F_1 \qquad \text{Iff } \pi^1 \models F_1 \qquad \pi^i \models \mathbf{N} F \quad \text{Iff } \pi^{i+1} \models F_1$$

$$\pi \models F_1 \cup F_2 \qquad \text{Iff } \exists j \geq 0, \ \pi^j \models F_2, \text{and } \pi^i \models F_1 \text{ for all } 0 \leq i < j$$

$$\pi \models \diamondsuit F_1 \qquad \text{Iff } \exists j \geq 0, \ \pi^j \models F_1$$

$$\pi \models \Box F_1 \qquad \text{Iff } \forall j \geq 0, \ \pi^j \models F_1$$

$$\pi \models \Box \diamondsuit F_1 \qquad \text{Iff } \exists^{\infty} j \geq 0, \ \pi^j \models F_1$$

$$\pi \models \Box \diamondsuit F_1 \qquad \text{Iff } \exists^{\infty} j \geq 0, \ \pi^j \models F_1 \qquad \exists^{\infty} = \forall i \geq 0, \exists j \geq i$$

$$\pi \models \diamondsuit \Box F_1 \qquad \text{Iff } \forall^{\infty} j \geq 0, \ \pi^j \models F_1 \qquad \forall^{\infty} = \exists i \geq 0, \forall j \geq i$$

AP — is a set of atomic propositions (Boolean valued variables, predicates)

Kripke structure over AP as a 4-tuple M = (S, I, R, L)

S = a finite set of states.

I = a set of initial states $I \subseteq S$

 $R = a transition relation <math>R \subseteq S \times S$

L = a labelling function $L: S \rightarrow 2^{AP}$

Kripke structure over AP as a 4-tuple M = (S, I, R, L)

S = a finite set of states.
$$S = \{s_1, s_2, s_3\}$$

 $I = a \text{ set of initial states } I \subseteq S \quad I = \{s_1\}$

 $R = a transition relation <math>R \subseteq S \times S$

$$R = \{(s_1, s_2), (s_2, s_1), (s_2, s_3), (s_3, s_3)\}$$

L = a labelling function $L: S \rightarrow 2^{AP}$

$$L = \{(s_1, \{p, q\}), (s_2, \{q\}), (s_3, \{p\})\}$$

$$AP = \{p, q\}$$

Kripke structure over AP as a 4-tuple M = (S, I, R, L) AP = $\{p, q\}$

$$S = \{s_1, s_2, s_3\}$$
 $I = \{s_1\}$ $R = \{(s_1, s_2), (s_2, s_1), (s_2, s_3), (s_3, s_3)\}$

$$L = \{(s_1, \{p, q\}), (s_2, \{q\}), (s_3, \{p\})\}$$

M may produce a path $w = s_1, s_2, s_1, s_2, s_3, s_3, s_3, s_3, s_3, \ldots$

$$\pi^{s_1}$$
 $\pi = \{p, q\}, \{q\}, \{p, q\}, \{q\}, \{p\}, \{p\}, \{p\}, \{p\}, \dots$

Given a kripke structure M and a path π in M, a state $s \in S$, and an LTL formula F:

1.
$$\langle M, \pi \rangle \models F$$
 iff $\pi^{S_o} \models F$, where S_o is initial state of π

2.
$$\langle M, s_o \rangle \models F$$
 iff $\langle M, \pi \rangle \models F$ for all paths starting at s_o .

3.
$$\langle M \rangle \models F$$
. iff $\langle M, s_o \rangle \models F$ for every $s_o \in I$, where I initial states of M .

LTL: Semantics

A formula F is satisfiable if there exists at least one Kripke Structure M, and at least one initial state s_o such that:

$$\langle M, s_o \rangle \models F$$

A formula F is valid if for all Kripke Structures M, and for all initial states s_o :

$$\langle M, s_o \rangle \models F$$

LTL model checking — Given formula F, and Kripke Structure M checks if $\langle M, s_o \rangle \models F$ holds for every initial state $s_o \in I$

LTL: Semantics

Does $M \models \Box p$?

Yes,
$$\langle M, s_1 \rangle \models \Box p$$
 and $\langle M, s_3 \rangle \models \Box p$

Does $M \models \mathbb{N}(p \land q)$? No, $\langle M, s_1 \rangle \models \mathbb{N}(p \land q)$, but $\langle M, s_3 \rangle \not\models \mathbb{N}(p \land q)$

Does
$$M \models \Box (\neg q \rightarrow \Box (p \land \neg q))$$
? Yes

Does $M \models q \ U(p \land \neg q)$? No, $\langle M, \pi_1 \rangle \not\models q \ U(p \land \neg q)$

LTL implicitly quantifies "universally" over paths —

$$< M, s_o > \models F$$
 iff $< M, \pi > \models F$ for all paths starting at s_o .

$$F = \Diamond(p)$$
 F is True if for all the paths, eventually p is True.

Does there exists a path where eventually p is True?

Is it possible to get to a state where the machine is not ready but it started?

One way to do is:
$$\Box \neg (p)$$

$$\Box \neg (\neg ready \land started)$$

But how to model:

There exists a path where, from some state onward, all future states avoid deadlock?

We need path quantifiers!!!

LTL — deals with paths or traces.

CTL — branching time structure (Trees)

LTL — deals with paths or traces.

CTL — branching time structure (Trees)

Explicitly introduces path quantifiers!

 \exists^P, \forall^P — (in general, we would write as \exists, \forall)

 $\exists \Diamond red \qquad \forall \Diamond red$

 $\exists \Box red \qquad \forall \Box red$

∃ yellow U red ∀ yellow U red

 $\exists N \ red$ $\forall N \ red$

CTL Syntax

```
F, F_1 = True
          p (atomic proposition)
          F_1 \wedge F, F_1 \vee F, F \rightarrow F_1, F_1 \leftrightarrow F
        \neg F
           \forall \mathbf{N} F \mid \forall \Box F \mid \forall \Diamond F \mid \forall (F \cup F_1) \mid
           \exists \mathbf{N} F \mid \exists \Box F \mid \exists \Diamond F \mid \exists (F \cup F_2)
```


 $\exists \Diamond (NF)$ Not a WWF!!

CTL: Semantics

Semantics with respect to a given Kripke Structure M

Let
$$\pi = s_0, s_1, s_2, \dots$$

$$\pi(i) = s_i$$
 State at i^{th} level. $\pi^i = s_i, s_{i+1}, s_{i+2}, \dots$ Suffix of π

$$< M, s_o > \models p$$

Iff
$$p \in \pi(0)$$

$$\langle M, s_i \rangle \models p \quad \text{Iff } p \in \pi(i)$$

$$< M, s_i > \models \forall N F_1$$

$$F_{1}$$

Iff
$$\forall \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \} < M, s_{i+1} > \models F_1$$

$$< M, s_i >$$
 $\models \exists N F_1$

Iff
$$\exists \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \} < M, s_{i+1} > \models F_1$$

$$< M, s_i > \models \forall \Box F_1$$

$$< M, s_i > \models \forall \Box F_1 \quad \text{Iff } \forall \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \} \quad \forall j \ge i, < M, s_j > \models F_1$$

$$\forall j \geq i, < M, s_j > \models F_1$$

$$< M, s_i > \exists \Box F_1$$

$$< M, s_i > \exists \exists F_1 \quad \text{Iff } \exists \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \} \quad \forall j \ge i, < M, s_i > \exists F_1$$

$$\forall j \geq i, < M, s_j > \models F_1$$

$$\langle M, s_i \rangle \models \forall \Diamond F_1$$

$$\langle M, s_i \rangle \models \forall \Diamond F_1 \quad \text{Iff } \forall \pi \in \{s_i, s_{i+1}, s_{i+2}, \dots, \} \quad \exists j \geq i, \langle M, s_j \rangle \models F_1$$

$$\exists j \geq i, < M, s_i > \models F_1$$

$$< M, s_i > \models \exists \Diamond F_1$$

$$< M, s_i > \exists j \ge i, < M, s_i > \exists f \exists \pi \in \{s_i, s_{i+1}, s_{i+2}, ...,\} \quad \exists j \ge i, < M, s_i > \exists f \ge i, <$$

$$\exists j \geq i, < M, s_j > \models F_1$$

CTL: Semantics Semantics with respect to a given Kripke Structure M

Let
$$\pi = s_0, s_1, s_2, \dots$$
 $\pi(i) = s_i$ State at i^{th} level. $\pi^i = s_i, s_{i+1}, s_{i+2}, \dots$ Suffix of π

$$\langle M, s_o \rangle \models p$$
 Iff $p \in \pi(0)$ $\langle M, s_i \rangle \models p$ Iff $p \in \pi(i)$

$$< M, s_i > \models \forall (F \cup F_1) \text{ Iff } \forall \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \}$$

$$\exists j \geq i, < M, s_j > \models F_1 \& \forall i \leq k < j, < M, s_k > \models F$$

$$< M, s_i > \exists \ (F \cup F_1) \ \text{Iff} \ \exists \pi \in \{s_i, s_{i+1}, s_{i+2}, ..., \}$$

$$\exists j \geq i, < M, s_j > \models F_1 \& \forall i \leq k < j, < M, s_k > \models F$$

CTL:Examples

Safety: "something bad will never happen"

$$\neg(\exists \Diamond p) \equiv \forall \Box \neg p$$

Reactor_temp is never going to be above 1000.

$$\forall \Box \neg (ReactorTemp > 1000)$$

If car takes left, then immediately car should not take right.

$$\forall \Box \neg (left \land \exists N right)$$

$$\neg \exists \Diamond \neg (left \land \forall N right)$$

CTL:Examples

Liveness: "something good will happen"

$$\forall \Diamond p$$

All students will get their degree

$$\forall \Diamond (Student \land degree)$$

If you start something you will eventually finish it.

$$\forall \Box (start \rightarrow \forall \Diamond Finish)$$

CTL:Examples

Correlation: $\Diamond p \to \Diamond q$ What will be the equivalent CTL formula?

 $\forall \Diamond p \rightarrow \forall \Diamond q$ If all the paths have p along them then all the paths have q along them!