COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

System

S(I,O)

- Computational Tree Logic (CTL)
- Tools to check if the model satisfies the property.

Mathematical model of the system: specification of the property/problem: • Boolean logic, First Order Logic (FOL), Linear Temporal Logic (LTL),

- Theorem: For any integers m and n, if m and n are odd, then m+n is even
 - Try to prove/disprove this theorem.

- How do we formalize the definitions and reasoning we use in our proofs?
- This week: Propositional Logic: reasoning about Boolean values First Order Logic: reasoning about properties of multiple objects.

What is Logic?

A formal logic is defined by syntax and semantics. Syntax:

- An alphabet of symbols.
- A finite sequence of these symbols is called expression
- A set of rules defines the well-formed expression.

Semantics:

• Gives meaning to well-formed expressions

Propositional Logic

IsWinter \land *IsSnow*

Propositional Variables — TakeML, TryAgain, IsWinter,...

Each Proposition variables stands for a proposition, something that is either True or False

- $TakeML \lor TakeFM$
- $\neg FirstSucceed \rightarrow TryAgain$

 - Propositional Connectives— \neg , V, \land Links propositions into larger propositional

Propositional Logic: Syntax

- Left parenthesis
- Right parenthesis
- Negation
- \wedge Or
- And V
- Condition \rightarrow
- **Bi-Condition** \leftrightarrow
- P_1 Propositional variables
- P_2

 P_n

Logical Symbols: The meaning of logical symbols is always

Non logical Symbols/Propositional Symbols: The meaning of nonlogical symbols depends on the context.

Propositional Logic: Syntax

Expression is a sequence of symbols.

$$(P_1 \wedge P_2), ((-$$

We defined the set W of Well-Formed Fromulas (WFFs) as follows:

- Every expression consists of a single proportional symbol is in W.
- 2. If α and β are in W, so are $(\neg \alpha), (\alpha \lor \beta), (\alpha \land \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$
- No expression is in W unless forced by (1) and (2). **२.**

This definition is Inductive: the set being defined is used as part of definition.

$\neg P_1) \lor P_2), \quad)) \leftrightarrow)P_1$

Exercise-1: Propositional Logic

Prove that any WFFs has the same number of left parentheses and right parentheses?

How do we parse the following:

 $\neg p \rightarrow q \lor r \rightarrow p \lor q \land z$

How would you use the definition of WFFs to prove that $) \rightarrow P$ is not a WFF?

Notational Conventions

- Larger variety of propositional symbols: $A, B, C, p_1, p_2, p, q, r, \alpha, \beta$
- Outermost parentheses can be omitted: $p \lor q$ instead of $(p \lor q)$
- Negation symbol binds stronger than binary connectives, and its scope is as small as possible:

$$\neg p \lor q \equiv ((\neg p))$$

- { \lor , \land }bind stronger than{ \rightarrow , \leftrightarrow }, for example: $p \land q \rightarrow \neg r \lor s \equiv ((p \land q) \rightarrow ((\neg r) \lor s))$
- All operators are right-associative. How do we parse the following:

$$\neg p \to q \lor r \to p \lor q \land z \equiv ((\neg p) \to ((q \lor r) \to (p \lor (q \land z))))$$

 $) \lor q$

should be able to determine the value of α .

$$F = ((p \lor q) \lor r)$$

F is True
$$p = 1, q = 0, r = 0$$

F is called propositional Formula.

A mapping for assigning propositional variables to either o and 1, and evaluating F under that mapping.

Intuitively, given a WFF α and a value (either T or F) for each propositional symbol in α , we

- τ is a function that maps proposition variables of a propositional formula to {0,1}.
 - $F = ((p \lor q) \lor r)$ $\tau : \{ p \mapsto 1, q \mapsto 0, r \mapsto 1 \}$
- How many such τ (truth assignments) can exist?
- τ satisfies formula F if and only if $F(\tau)$ is such a τ is called satisfying assignment

• We use $\tau \models F$ to represent.

We call τ a truth assignment.

γ variables(F)

 $F(\tau)$: ((1 \lor 0) \lor 1) = 1

g	Q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

- If there exists a τ such that $\tau \models F$, we say that F is satisfiable. $F = ((p \lor q) \lor r) \qquad \tau : \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ F is satisfiable
- If for all τ in $2^{variables(F)}$, $F(\tau)$ is 1, then F is valid.

Is $F = ((p \lor q) \lor r)$ is valid? Is $F = (p \lor \neg p)$ is valid?

• If there does not exists a τ in $2^{variables(F)}$ such that $F(\tau)$ is 1, then F is unsatisfiable.

Is $F = ((p \lor q) \lor r)$ is unsatisfiable?

Is $F = (p \land \neg p)$ is unsatisfiable ?

- Set of all satisfying assignment of F is called models. $models(F) = \{\tau | F(\tau) = 1\}$ $Models(\neg F) = \{2^{variables}\} \setminus Models(F)$
- - $Models(F \lor G) = Models(F) \cup Models(G)$
 - $Models(F \land G) = Models(F) \cap Models(G)$
- Equivalent formulas: Two formulas F and G are considered to be equivalent to each other if and only if they both have same models, that is, if $Models(F) = Models(G), F \equiv G$.

Exercise-2: Propositional Logic

Determine whether the following formulas are satisfiable, unsatisfiable, or valid: $(p \lor q) \land (\neg p \lor \neg q)$ $(p \lor q) \land (\neg p \lor \neg q) \land (p \leftrightarrow q)$ $\{p, p \rightarrow q\} \models q$

Given n proportional variables, how many Boolean functions $B(p_1, p_2, ..., p_n)$ can be generated?

formula in Σ also satisfies α .

If unsatisfiable, then $\{\beta_1, \beta_2, ..., \beta_n\} \models \alpha$.

Suppose Σ is a set of WFFs, then $\Sigma \models \alpha$, if every truth assignment which satisfies each

To check whether $\{\beta_1, \beta_2, \dots, \beta_n\} \models \alpha$, check the satisfiability of $(\beta_1 \land \beta_2 \dots \land \beta_n) \land (\neg \alpha)$.

Determining Satisfiability

To check whether α is satisfiable, form the truth table for α . If there is a row in which *True* appears as the value for α , then α is satisfiable. Otherwise, α is unsatisfiable.

What is the complexity of this algorithm?

2^{*n*} where n is the number of propositional symbols.

How to check the validity of a formula α ?

If $\neg \alpha$ is unsatisfiable then α is valid.

Boolean ——> SAT Solvers /propositional formulas

If formula is SAT is fiable, gives an satisfying assignment

Conjunction Normal Form (CNF)

•
$$F = (x_1 \lor x_2) \land (\neg x_1 \lor x_3)$$

Clauses Literals : $x_1, \neg x_1, x_2, \neg x_2, x_3, \neg x_3$
CNF: $F = C_1 \land C_2 \land C_3 \dots \land C_m$
where $C_i = (l_1 \lor l_2 \lor \dots \lor l_k)$
where $l_j = p; l_j = \neg p$
Where p is propositional variable

SAT solvers takes CNF formulas as input.

where p is propositional variable

Can every formula F can be represented in CNF form, say F_{CNF} ?

Can every formula F can be represented in CNF form, say F_{CNF} ?

 $F = ((x_1 \land \neg x_2) \lor (x_3 \land x_4))$ Can you convert F into F_{CNF} ? $F_{CNF} = (x_1 \lor x_3) \land (x_1 \lor x_4) \land (\neg x_2 \lor x_3) \land (\neg x_2 \lor x_4)$ $F = ((x_1 \land \neg x_2) \lor (x_3 \land x_4)) \lor (x_5 \land x_6)$, Can you convert F into F_{CNF} ? $F = (x_1 \land y_1) \lor \ldots \lor (x_n \land y_n)$, size of equivalent F_{CNF} ? 2^n

In the worst case, it may take exponential many steps.

- Yes, every F can be represented in F_{CNF} , such that $F \equiv F_{CNF}$

Can we do better?

Equisatisfiable Formulas

•
$$F = (p \lor \alpha) \land (\neg p \lor \beta)$$
 $G = (\alpha \lor \beta)$
F and G are Equisatisfiable. F is satisfiab

$$F = ((x_1 \land \neg x_2) \lor (x_3 \land x_4)) \quad \text{Can you convert F into } F_{CNF}?$$

$$= (t_1 \leftrightarrow (x_1 \land \neg x_2)) \land (t_2 \leftrightarrow (x_3 \lor x_4)) \land (t_1 \lor t_2)$$

$$= (\neg t_1 \lor (x_1 \land \neg x_2)) \land (\neg x_1 \lor x_2 \lor t_1) \land (\neg t_2 \lor (x_3 \land x_4)) \land (\neg x_3 \lor \neg x_4 \lor t_2) \land (t_1 \lor t_2)$$

$$= (\neg t_1 \lor x_1) \land (\neg t_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor t_1) \land (\neg t_2 \lor x_3) \land (\neg t_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor t_2) \land (t_1 \lor t_2)$$

$$= F_{CNF}$$

$$F = (x_1 \land y_1) \lor \ldots \lor (x_n \land y_n), \text{ size of equivalent } F_{CNF}? \quad 2n + n + 1$$

- ble if and only if G is satisfiable.

Every formula F can be represented in CNF form, say F_{CNF} in polynomial time such that F is satisfiable if and only if F_{CNF} is satisfiable.

K-SAT

CNF:
$$F = C_1 \wedge C_2 \wedge C_3 \dots \wedge C_m$$

where $C_i = (l_1 \vee l_2 \vee \dots \vee k_j)$
where $l_j = p; l_j = \neg p$
Where p is propositional

If K = 2, then 2 - SAT. $F = (x_1 \lor \neg x_2) \land (x_3 \lor x_4)$ If K = 3, then 3 - SAT. $F = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4)$

$\vee l_k$)

variable

Exercise-3: Propositional Logic

Can you convert 4 - SAT formula into 3 - SAT formula?

Can you convert 3 - SAT formula into 2 - SAT formula?

Course Webpage

Thanks!