

COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

<https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html>

Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn't have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M $\langle D = \text{set of natural numbers} \rangle$

- we can consider only theory of natural numbers.
- we also consider the set of valid sentences over natural numbers.

For example: $\forall x \ x + 1 \neq 0$

Intro to SMT: Satisfiability Modulo Theory

Theory = Subject Knowledge + FOL

Model $M < D = \text{set of natural numbers} >$

- we can consider only theory of natural numbers.
- we also consider the set of valid sentences over natural numbers.

For example: $\forall x x + 1 \neq 0$

Intro to SMT: Satisfiability Modulo Theory

Is $F = \exists x, x > 0$ satisfiable? Valid? In FOL?

Yes, it is satisfiable!

$M : \langle D = \mathbb{N}, I \rangle$ F is satisfiable.

No, it is not valid, $M : \langle D = \mathbb{Z}^-, I \rangle$

A formula F is T -satisfiable if there is model M such that $M \models T \cup F$.

We write T -satisfiability as $M \models_T F$.

T : set of true sentences in arithmetic over natural numbers.

Is $T \cup F$ satisfiable?, we need to restrict our domain to set of natural numbers, and assume the knowledge of natural number arithmetic like $\forall x x > 0, \forall x x + 1 \neq 0$

Yes, it is satisfiable!

$M \models_T F$

Formulas in different theories
(Linear integer arithmetic,
Linear real arithmetic, bit vectors, strings)

→ SMT

If formula is satisfiable, gives an satisfying
assignment

Unsatisfiable

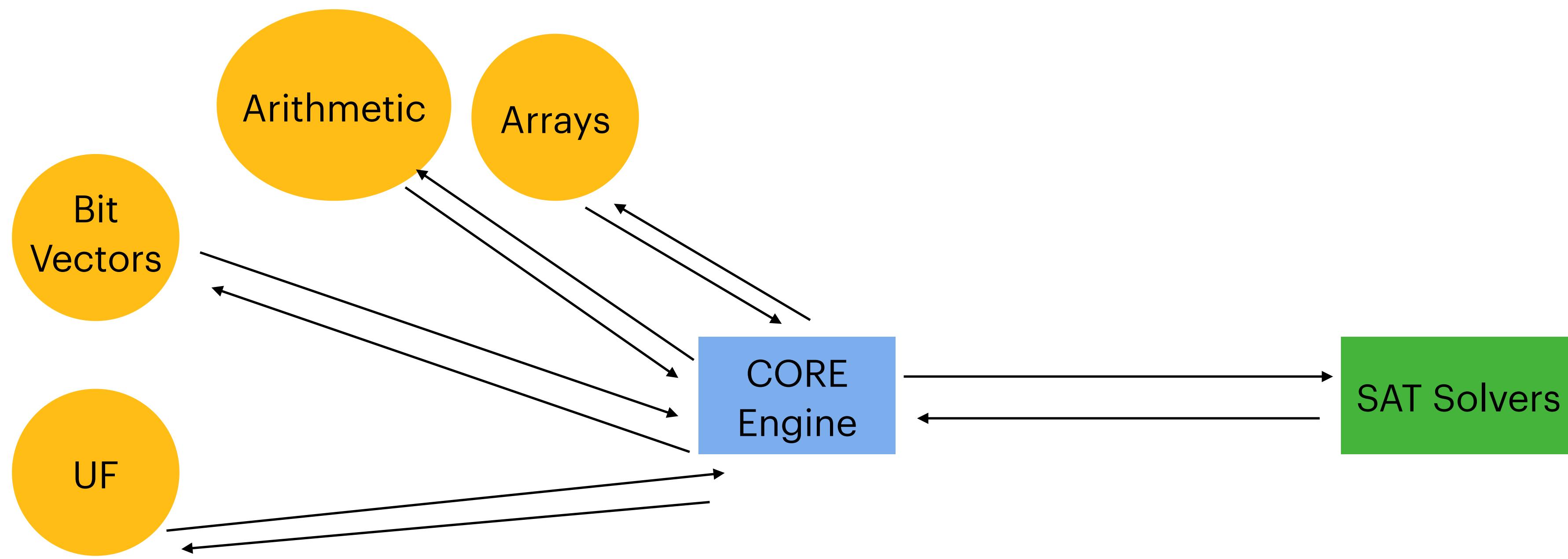
Chaff SAT Solver – 2000 (DPLL + conflict analysis, heuristics)

Order of magnitude faster than previous SAT solvers

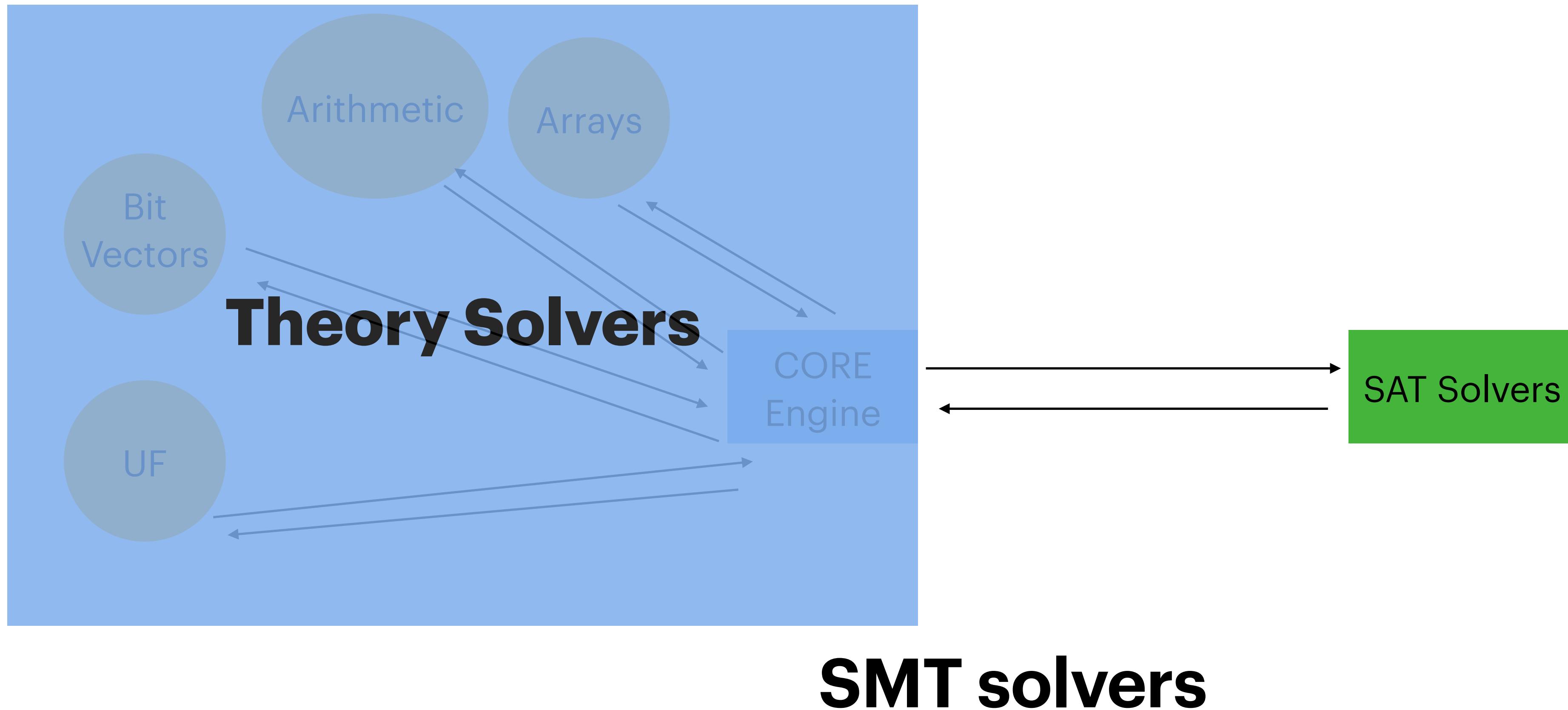
Many real-world problems don't exhibit worst case theoretical performance

Alto, 2001, came up with idea of combining SAT solvers with decision procedures for decidable first-order theories.

SVC, CVC, Yices solver came to picture – first SMT solver was born!!



SMT solvers



Theory Solvers

Theory Solver: Difference Logic

Difference logic – the satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form $x - y \oplus c$,
where x and y are variables, c is a numeric constant, and

$$\oplus \in \{ < , > , \leq , \geq , = \}$$

The variables can range over either the integers (QF_IDL) or the reals (QF_RDL).

Theory Solver: Difference Logic

The first step is to rewrite everything in terms of \leq

$$x - y = c \equiv (x - y \leq c) \wedge (y - x \leq -c)$$

$$x - y \geq c \equiv y - x \leq -c$$

$$x - y < c \equiv x - y \leq c - 1 \text{ For integers}$$

$$\equiv x - y \leq c - \delta \text{ For reals}$$

$$x - y > c \equiv y - x < -c$$

Theory Solver: Difference Logic

- A conjunction of literals, all of the form $x - y \leq c$.
- From these literals, we form a weighted directed graph with a vertex for each variable.
- For each literal $x - y \leq c$, there is an edge $y \rightarrow x$, with weight c .
- The set of literals is satisfiable iff there is no cycle for which the sum of the weights on the edges is negative.
- There are a number of efficient algorithms for detecting negative cycles in graphs

$$(x - y = 5) \wedge (z - y \geq 2) \wedge (z - x > 2) \wedge (w - x = 2) \wedge (z - w < 0)$$

Theory Solvers

Linear Arithmetic Solver

Handles inequalities and equalities over integers or real numbers:

Techniques: Fourier-Motzkin elimination, Simplex algorithm.

Check if $(x + 2y \leq 10) \wedge (x - y \geq 3)$?

Bit-Vector Solver

Deals with fixed-width integers and bitwise operations:

Techniques: Bit-blasting (reducing bit-vector problems to SAT), word-level reasoning

Check if $x > > 4 = 0x0A$

Theory Solvers

Theory Propagation

Deducing new constraints or facts based on existing ones.

For example, in linear integer arithmetic:

given $(x \geq 5) \wedge (y = x + 2)$, we can deduce $y \geq 7$

Theory Consistency Checking

Check if a set of constraints is consistent within the theory.

If not, it provides a conflict (a minimal subset of constraints that are unsatisfiable)



SMT solvers

SMT Solvers

Two main approaches:

1. “Eager” approach

1. Translate into an equisatisfiable propositional formula
2. Feed it to any SAT solver

UCLID

2. “Lazy” approach

1. Abstract the input formula to a propositional formula
2. Feed it to a SAT solver
3. Use a theory solver to refine the formula and guide the SAT solver

Cvc5, z3, MathSAT, OpenSMT

SMT solving – Lazy Approach

Theory: Equality with Uninterpreted Functions

$$(g(a) = c) \wedge (f(g(a)) \neq f(c)) \vee g(a) = d) \wedge (c \neq d)$$

$$\underline{p_1}$$

$$\underline{\neg p_2}$$

$$\underline{p_3}$$

$$\underline{\neg p_4}$$

Send $(p_1 \wedge (\neg p_2 \vee p_3) \wedge \neg p_4)$ to a SAT solver.

SAT solver returns $\sigma = \{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0, p_4 \mapsto 0\}$

Theory solver checks if σ is consistent or not!!

σ is not consistent, Theory solver returns UNSAT. Add $\neg\sigma$ as a clause.

Send $(p_1 \wedge (\neg p_2 \vee p_3) \wedge \neg p_4) \wedge (\neg p_1 \vee p_2 \vee p_3 \vee p_4)$ to a SAT solver.

SMT solving – Lazy Approach

$$\frac{(g(a) = c) \wedge (f(g(a)) \neq f(c)) \vee g(a) = d) \wedge (c \neq d)}{p_1 \quad \quad \quad \neg p_2 \quad \quad \quad p_3 \quad \quad \quad \neg p_4}$$

Send $(p_1 \wedge (\neg p_2 \vee p_3) \wedge \neg p_4)$ to a SAT solver. $\sigma \models F \sigma = \{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0, p_4 \mapsto 0\}$

σ is not consistent, Theory solver returns UNSAT. Add $\neg \sigma$ as a clause.

Send $(p_1 \wedge (\neg p_2 \vee p_3) \wedge \neg p_4) \wedge (\neg p_1 \vee p_2 \vee p_3 \vee p_4)$. $\sigma = \{p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0\}$

σ is not consistent, Theory solver returns UNSAT. Add $\neg \sigma$ as a clause.

Send $(p_1 \wedge (\neg p_2 \vee p_3) \wedge \neg p_4) \wedge (\neg p_1 \vee p_2 \vee p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee \neg p_3 \vee p_4)$

At last SAT Solver returns UNSAT, the original formula in UF is UNSAT

SMT solving – Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns σ

Checks for partial assignment M , and returns M .

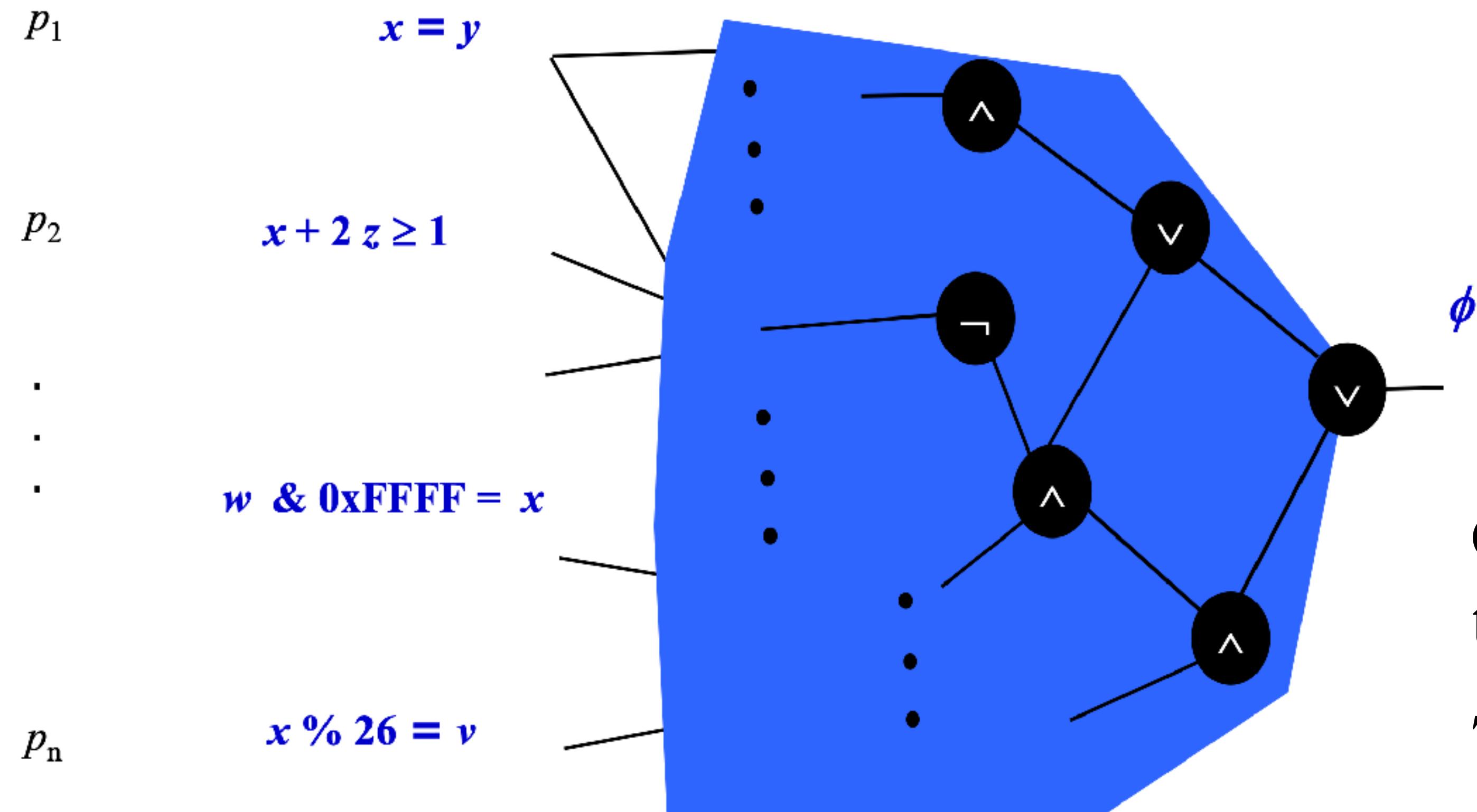
If $M/(\sigma)$ is T-unsatisfiable, add $\neg M$ as a clause

Identify a T-unsatisfiable subset M_o of M , and $\neg M_o$ as a clause

In our previous example, we could have added

$(\neg p_1 \vee p_2 \vee p_4)$ instead of $(\neg p_1 \vee p_2 \vee p_3 \vee p_4)$

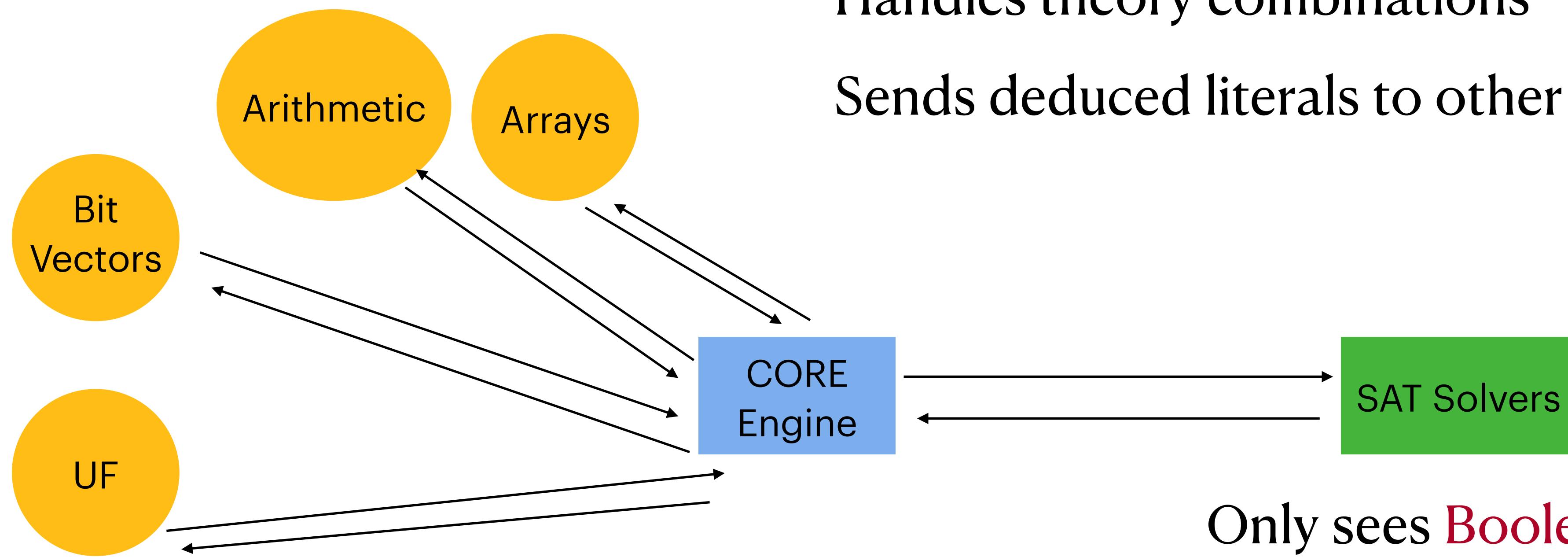
Backtrack to a point where M was still T-Satisfiable,
use this to pass more explanation to SAT solver.



Can have combinations of theories!

Task is to find an assignment to $Vars(\phi)$ such that ϕ is satisfiable!

SMT solvers



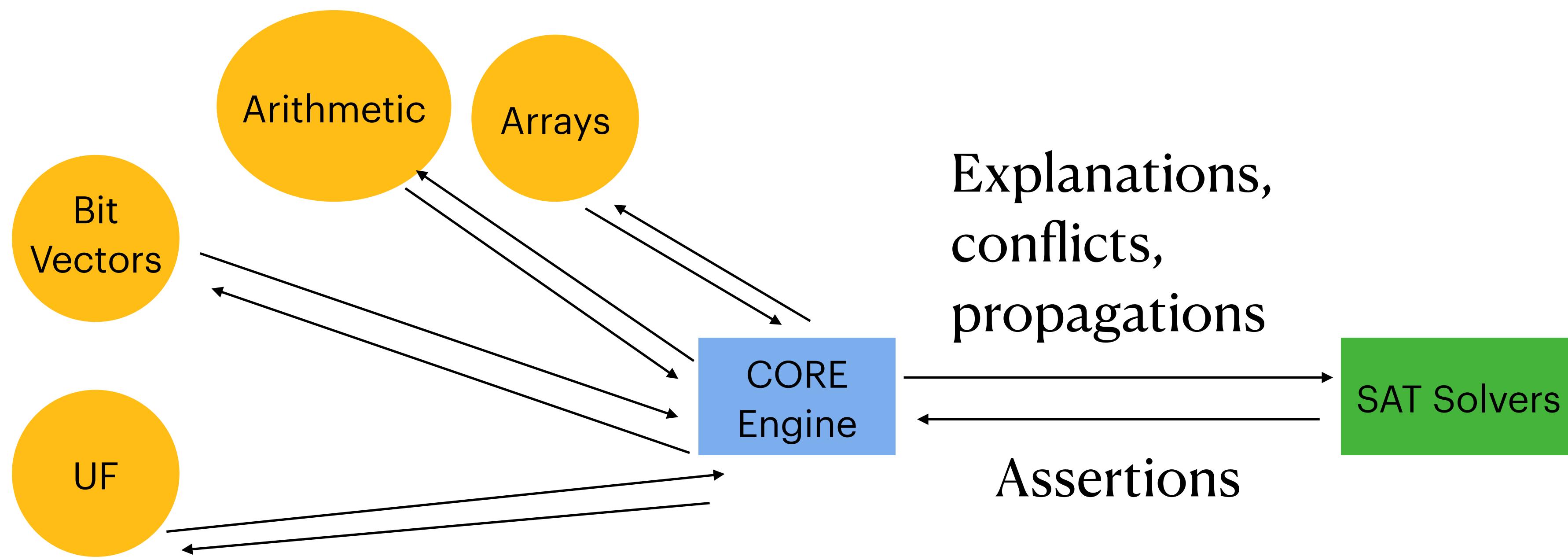
Theory Solvers!
Decide T-satisfiability of a conjunction of literals.

Sends each assertions to the appropriate theory
Handles theory combinations
Sends deduced literals to other theories/SAT solver

Only sees **Boolean Skeleton** of the problem!

Builds partial model by assigning truth values to literals

Sends these literals to the core as assertions



SMT solvers

From SAT & SMT to Temporal Logic

SAT: Checks whether a propositional formula is satisfiable.

SMT: Extends SAT with richer theories (e.g., arithmetic, arrays).

But What About Time?

SAT/SMT/FOL verify properties in static systems.

Many real-world systems evolve over time (e.g., software, robots, protocols).

"A robot should always eventually return to its charging station."

"A user who enters a correct password will eventually get access."

"How can we verify that a system never reaches an error state?"

Can we express this in SAT or FOL?

From SAT & SMT to Temporal Logic

Classical logic (SAT/SMT) = Static Reasoning

Temporal logic = Reasoning over time

Linear Temporal Logic (LTL) Assumes a single timeline (one possible sequence of events).

Next Class: Linear Temporal Logic (LTL)

Course Webpage

Thanks!