COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

ey

https:/priyanka-golia.github.io/teaching/COL-750-COL7250/index.html

Course Webpage



Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking
FOL: Doesn’t have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers>

— we can consider only theory of natural numbers.

— we also consider the set of valid sentences over natural numbers.

Forexample: Vx x+ 1 # 0



Intro to SMT: Satisfiability Modulo Theory
Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers>

— we can consider only theory of natural numbers.
— we also consider the set of valid sentences over natural numbers.

Forexample: Vx x+ 1 # 0



Intro to SMT: Satisfiability Modulo Theory
Is F= dx,x > 0satisfiable? Valid ? In FOL?

Yes, it is satishable! No,itisnotvalid M :< D =27",1 >
M :< D =N, > Fissatisfiable.

A formula F is T-satisfiable if there is model M such that M E T U F.
We write T -satisfiability as M k. F.

T: set of true sentences in arithmetic over natural numbers.
Is T"U F satisfiable ?, we need to restrict our domain to set of natural numbers, and assume

the knowledge of natural number arithmetic like Vx x > O,Vxx+ 1 # 0

Yes, it is satisfiable!
ME, F



If formula is satisfiable, gives an satisfying

/ assignment

Formulas in different theories —> SMT

(Linear integer arithmetic, \

Linear real arithmetic, bit vectors, strings) ~ Unsatisfiable



Chaff SAT Solver — 2000 (DPLL + conflict analysis, heuristics)
Order of magnitude faster than previous SAT solvers

Many real-world problems don’t exhibit worst case
theoretical performance

Alto, 2001, came up with idea of combining SAT solvers with decision procedures for
decidable first-order theories.

SVC, CVC, Yices solver came to picture — first SMT solver was born!!!



SMT solvers



SMT solvers



Theory Solvers

Theory Solver: Difference Logic

Difference logic — the satisfiability of a conjunction of arithmetic atoms.

Each atom is of the formx — y @ c,
where x and y are variables, ¢ is a numeric constant, and

be{<,>,<,>2,=}

The variables can range over either the integers (QF_IDL) or the reals (QF_RDL).



Theory Solver: Difference Logic

The first step is to rewrite everything in terms of <
x—y=c=xx—-y<co)A(y—x<—-0)
X—y2Cc=y—x<—¢C

x—y<c =x-—y<c—1 Forintegers

=x—y<c—6 Forreals

X—y>c =Ey—x<-—¢



Theory Solver: Difference Logic

* A conjunction of literals, all of the formx — y < c.

* From these literals, we form a weighted directed graph with a vertex for each
variable.

* Foreachliteral x — y < ¢, thereis an edge y — x, with weight c.

* The set of literals is satisfiable iff there is no cycle for which the sum of the
weights on the edges is negative.

* There are a number of efficient algorithms for detecting negative cycles in graphs

X=—Vv=99AEZ=-V22ODANEZ=—x>2AW—-—x=2)A(z—w <0)



Theory Solvers

Linear Arithmetic Solver
Handles inequalities and equalities over integers or real numbers:

Techniques: Fourier-Motzkin elimination, Simplex algorithm.

Checkif(x+2y < 10)A(x—y > 3)?

Bit-Vector Solver
Deals with fixed-width integers and bitwise operations:

Techniques: Bit-blasting (reducing bit-vector problems to SAT), word-level
reasoning

Checkifx > > 4 = 0x0A



Theory Solvers

Theory Propagation

Deducing new constraints or facts based on existing ones.
For example, in linear integer arithmetic:

given (x > ) A(y=x+2),wecandeducey > =7
Theory Consistency Checking

Check if a set of constraints is consistent within the theory.
If not, it provides a conflict (a minimal subset of constraints that are unsatisfiable)



SMT solvers



SMT Solvers

Two main approaches:
1. “Eager” approach
1. 'Translate into an equisatisfiable propositional formula | UCLID
2. Feed it to any SAT solver
2. “Lazy” approach
1. Abstract the input formula to a propositional formula
2. Feed it to a SAT solver

3. Use a theory solver to refine the formula and guide the SAT solver

Cvcb, z3, MathSAT, OpenSMT



SMT solving — Lazy Approach

Theory: Equality with Uninterpreted Functions

(8(a) = c) A (f(gla)) # f(c) V gla) = d) A (¢ # d)

P1 P2 P3 Py
Send (p; A (7p, V p3) A 1py) to a SAT solver.

SAT solver returns ¢ = {p; = 1,p, = 0,p3 = 0,p, = 0]

Theory solver checks if ¢ is consistent or not!!

o is not consistent, Theory solver returns UNSAT. Add —o as a clause.

Send (p; A(mpr, Vp3) Apy) A(—p vV p,V pyV py) to a SAT solver.



SMT solving — Lazy Approach

(gla) = c) A (f(gla)) # flc) V gla) =d) A(c #d)
2 P> D3 TPy

Send (p; A (=p, V p3) Ap,)toaSAT solver. 6 F Fo={p, ~ 1,p, = 0,p; = 0,p, = 0}

o is not consistent, Theory solver returns UNSAT. Add —o as a clause.
Send (p; A (7P VP3) AP A(mp VoV psVpy). 6 =1pp = Lpy= Ips = 1p, = 0}

o is not consistent, Theory solver returns UNSAT. Add —o as a clause.

Send (p; A (P Vp3) Apg) A(p Vpr V3V ps) A

At last SAT Solver returns UNSAT, the original formula in UF is UNSAT



SMT solving — Lazy Approach Enhancements

SAT solvers checks for satisfying assignment and returns o

Checks for partial assignment M, and returns M.

If M/(0) is T-unsatisfiable, add =M as a clause

I[dentify a T-unsatisfiable subset M, of M, and =M jas a clause
In our previous example, we could have added

(=p;V p,V p,)instead of (=p; V p, V p3V py)

Backtrack to a point where M was still T-Satishable,
use this to pass more explanation to SAT solver.



P1

P>

x+2z21

w & 0xFFFF = x

x%2060=v

Can have combinations of
theories!

Task is to find an assignment

to Vars(@) such that ¢ is
satisfiable!



SMT solvers Sends each assertions to the appropriate theory

Handles theory combinations

Arithmetic  Arrays Sends deduced literals to other theories/SAT solver
Bit
Vectors \
Engine
UF —
— Only sees Boolean Skeleton
of the problem!

Theory Solvers! Builds partial model by
Decide T-satishability of a conjunction of literals. assigning truth values to literals

Sends these literals to the core
as assertions



. Explanations,
It .
Vectors COﬂﬂlCtS,
propagations
CORE .
Englne *
UF Assertions

SMT solvers



From SAT & SMT to Temporal Logic

SAT: Checks whether a propositional formula is satisfiable.
SMT: Extends SAT with richer theories (e.g., arithmetic, arrays).
But What About Time?

SAT/SMT/FOL verify properties in static systems.
Many real-world systems evolve over time (e.g., software, robots, protocols).

"A robot should always eventually return to its charging station.”
"A user who enters a correct password will eventually get access.”
"How can we verify that a system never reaches an error state?"

Can we express this in SAT or FOL?



From SAT & SMT to Temporal Logic

Classical logic (SAT/SMT) = Static Reasoning

Temporal logic = Reasoning over time

Linear Temporal Logic (LTL) Assumes a single timeline (one possible sequence
of events).



Next Class: Linear Temporal Logic (LTL)



Course Webpage

Thanks!



