

COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

<https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html>

	Operate On	And Produce
Connectives (\leftrightarrow , \rightarrow , \wedge , ...)	Propositions	A Proposition
Predicates	Objects	A Proposition
Functions	Objects	An Object

First Order Logic (FOL): Syntax

Well-Formed Formula (wff) of FOL are composed of six types of symbols (not including Parenthesis).

1. Constant symbols – representing objects.
2. Functions symbols – functions from pre-specified number of objects to an object.
3. Predicate symbols – more like specify properties to objects. Have specified arity.
Zero arity predicate symbols are treated as propositional symbols.
4. Variable symbols – will be used to quantify over objects.
5. Universal and existential quantifiers – will be used to indicate the type of quantification.
6. Logical connectives and negation.

First Order Logic (FOL): Syntax

Formula \rightarrow Atomic Formula

- | Formula
- | Connective Formula
- | Quantifier Variable Formula
- | \neg Formula
- | (Formula)

Connective $\rightarrow \leftrightarrow | \wedge | \vee | \rightarrow$

Quantifier $\rightarrow \forall | \exists$

Atomic Formula $\rightarrow P(T_1, \dots, T_n)$ where

$P \in Predicates$, T_i are Terms, n is arity.

Term $\rightarrow c$, where $c \in \text{CONST.}$

- | v , where $v \in \text{VAR}$
- | $F(T_1, \dots, T_n)$, where $F \in \text{Functions}$, T_i are Terms,
n is arity of F.

First Order Logic (FOL): Syntax

Is it a WFF?

TallerThan(John, Fatherof(John)) \wedge TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive.

Term $\rightarrow c$, where $c \in \text{CONST.}$

| v , where $v \in \text{VAR}$

| $F(T_1, \dots, T_n)$, where $F \in \text{Functions}$, T_i are Terms,
n is arity of F.

First Order Logic (FOL): Additional Terminology

Ground Terms – Terms without variables. Refers to Objects. John, Fatherof(John)

Ground Formulas – Formulas without variables.

$TallerThan(John, Fatherof(John)) \wedge TallerThan(Fatherof(Fatherof(John)), John)$.

Closed Formulas – formulas in which all variables are associated with quantifier.

$\forall x \text{ } Number(x) \rightarrow Number(+(x, 1))$

$\forall x \text{ } GreaterThan(x, y) \rightarrow LessThan(y, x)$ Y is not associated with quantifier.

Free variables – variables in a formula that don't have any quantifier. Typically free variables are treated as being implicitly universally quantified variables.

First Order Logic (FOL): Additional Terminology

All Birds can Fly.

$$\forall x (Bird(x) \rightarrow Fly(x))$$

Not all Birds can Fly.

$$\neg(\forall x (Bird(x) \rightarrow Fly(x)))$$

$$\equiv \exists x (Bird(x) \wedge \neg Fly(x))$$

All Birds cannot Fly.

$$\forall x (Bird(x) \rightarrow \neg Fly(x))$$

$$\equiv \neg(\exists x (Bird(x) \wedge Fly(x)))$$

First Order Logic (FOL): Semantics

Models of FOL!

Model of FOL is a tuple $\langle D, I \rangle$

D – non-empty domain of objects (set of objects, finite, infinite, uncountable)

I – Interpretation function.

Interpretation – assign a meaning.

If c is a constant symbol then $I(c)$ is an object in D .

Defined for all inputs:
Single output per input

If f is a function symbol of arity n , then $I(f)$ is a **total function** from $D^n \mapsto D$

If p is a predicate symbol of arity n , then $I(p)$ is a **subset of D^n** . If a tuple

$O = \langle o_1, \dots, o_n \rangle \in I(p)$, then we say that p is True for tuple O .

First Order Logic (FOL): Semantics

$D = \{\text{BOB}, \text{JOHN}, \text{NULL}\}$ Bob is taller than John.
John is father of Bob.

If c is a constant symbol then $I(c)$ is an object in D . $I(\text{Bob}) = \text{BOB}$

If f is a function symbol of arity n , then $I(f)$ is a **total function** from $D^n \mapsto D$

$I(\text{FatherOf})(\text{BOB}) = \text{JOHN}$ $I(\text{FatherOf})(\text{JOHN}) = \text{NULL}$. $I(\text{FatherOf})(\text{NULL}) = \text{NULL}$.

If p is a predicate symbol of arity n , then $I(p)$ is a **subset of D^n** . If a tuple $O = \langle o_1, \dots, o_n \rangle \in I(p)$, then we say that p is True for tuple O .

$I(\text{TallerThan}) = \{ \langle \text{BOB}, \text{JOHN} \rangle \}$

First Order Logic (FOL): Semantics

How do we handle variables?

Given a model $M = \langle D, I \rangle$ and a variable x , and object $o \in D$,

Extended Model $M[x \rightarrow o]$ as a model that is identical to M , except that I is extended to interpret x as o .

$$\exists x \text{ } \textit{TallerThan}(x, \textit{FatherOf}(x))$$

If we can find an object o in D such that following is True:

$$\textit{TallerThan}(x, \textit{FatherOf}(x))^{M[x \rightarrow o]}$$

First Order Logic (FOL): Semantics

$F = \text{TallerThan}(x, \text{FatherOf}(x))$

$D = \{BOB, JOHN, NULL\}$

$I(BOB) = \{BOB\}, I(JOHN) = \{JOHN\}, I(NULL) = \{NULL\}$

$I(\text{FatherOf})(BOB) = \{JOHN\}, I(\text{FatherOf})(JOHN) = \{NULL\}, I(\text{FatherOf})(NULL) = \{NULL\}$

$I(\text{TallerThan}) = \langle BOB, JOHN \rangle$

Is F True, with respect to $M \langle D, I \rangle$, where **variable assignment**

$\sigma = \langle \text{John} \rangle?$

First Order Logic (FOL): Semantics

How do we define the meaning of terms and formulas relative to a given model $M = \langle D, I \rangle$

Notation: Interpretation of a string(terms/formula) F relative to a model M , and an assignment σ by $F^{M,\sigma}$

Interpreting Terms:

If t is a constant or a variable, then we have:

$$t^{M,\sigma} = I(t) \quad x^{M,\sigma} = I(\text{John}) = \text{JOHN}.$$

If t is a function $f(t_1, \dots, t_n)$, then we have:

$$t^{M,\sigma} = I(f)(t_1^{M,\sigma}, \dots, t_n^{M,\sigma})$$

$$\text{FatherOf}(x)^{M,\sigma} = I(\text{FatherOf})(x^{M,\sigma})$$

$$\text{FatherOf}(x)^{M,\sigma} = I(\text{FatherOf})(\text{JOHN})$$

$$\text{FatherOf}(x)^{M,\sigma} = \text{NULL}$$

First Order Logic (FOL): Semantics

$$x^{M,\sigma} = I(\text{John}) = \text{JOHN.} \quad FatherOf(x)^{M,\sigma} = \text{NULL}$$

Interpreting Formulas:

1. Atomic Formulas F of the form $p(t_1, \dots, t_m)$

$$F^{M,\sigma} = \begin{cases} \text{True if } \langle t_1^{M,\sigma}, \dots, t_n^{M,\sigma} \rangle \in I(p) \\ \text{False otherwise.} \end{cases}$$

$$TallerThan^{F,\sigma} = \langle \text{JOHN}, \text{NULL} \rangle$$

$TallerThan^{M,\sigma} \notin I(TallerThan)$, $F^{M,\sigma}$ is False.

First Order Logic (FOL): Semantics

Interpreting Formulas:

1. Atomic Formulas F of the form $p(t_1, \dots, t_n)$

$$F^{M,\sigma} = \begin{cases} \text{True if } \langle t_1^{M,\sigma}, \dots, t_n^{M,\sigma} \rangle \in I(p) \\ \text{False otherwise.} \end{cases}$$

2. If F is of the form $F_1 \ o \ F_2$ where o is logical connective:

$$F^{M,\sigma} = F_1^{M,\sigma} \ o \ F_2^{M,\sigma}$$

3. If F is of the form $\neg F_1$:

$$F^{M,\sigma} = \neg F_1^{M,\sigma}$$

First Order Logic (FOL): Semantics

4. If F is of the form $\exists x F_1$

$$F^{M,\sigma} = \begin{cases} \text{True if there exists an } o \in D \text{ such that } F_1^{M,\sigma[x \rightarrow o]} \text{ is True} \\ \text{False otherwise.} \end{cases}$$

5. If F is of the form $\forall x F_1$

$$F^{M,\sigma} = \begin{cases} \text{True if for all } o \in D, F_1^{M[x \rightarrow o]} \text{ is True} \\ \text{False otherwise.} \end{cases}$$

First Order Logic (FOL): Semantics

$$F = \exists x \text{ TallerThan}(x, \text{FatherOf}(x))$$

We need to find a model M such that following is True:

$$[\exists x \text{ TallerThan}(x, \text{FatherOf}(x))]^M$$

This is true iff we can find an object o in D such that:

$$\text{TallerThan}(x, \text{FatherOf}(x))^{M[x \rightarrow o]}$$

BOB is such an object.

How about $F = \forall x \text{ TallerThan}(x, \text{FatherOf}(x))$?

First Order Logic (FOL): Semantics

$$F = \forall x \text{ TallerThan}(x, \text{FatherOf}(x))$$

We need to find a model M such that following is True:

$$[\forall x \text{ TallerThan}(x, \text{FatherOf}(x))]^M$$

This is true iff for all objects o in D the following is True:

$$\text{TallerThan}(x, \text{FatherOf}(x))^{M[x \rightarrow o]}$$

We saw that $\text{TallerThan}(x, \text{FatherOf}(x))^{M[x \rightarrow JOHN]}$ is False.

$F = \forall x \text{ TallerThan}(x, \text{FatherOf}(x))$ is False.

First Order Logic (FOL): Semantics

Assignment: For a domain D is a function $\sigma : X \mapsto D$

Where X is set of variables of formula

Given $M = (D, I)$ and given an assignment σ , satisfaction relation $M, \sigma \models F$ is follows:

$$M, \sigma \models \top$$

$$M, \sigma \not\models \perp$$

$$M, \sigma \models P(t_1, \dots, t_n) - \text{iff } I(P)((t_1^M, \dots, t_n^M)^\sigma) = 1$$

$$M, \sigma \models \neg F - \text{iff } M, \sigma \not\models F$$

$$M, \sigma \models F \wedge G - \text{iff } M, \sigma \models F \text{ and } M, \sigma \models G$$

$$M, \sigma \models F \vee G - \text{iff } M, \sigma \models F \text{ or } M, \sigma \models G$$

$$M, \sigma \models F \rightarrow G - \text{iff } M, \sigma \not\models F \text{ or } M, \sigma \models G$$

$$M, \sigma \models \forall x F - \text{iff } M, \sigma[x \mapsto a] \models F \text{ for all } a \in D$$

$$M, \sigma \models \exists x F - \text{iff } M, \sigma[x \mapsto a] \models F \text{ for some } a \in D$$

First Order Logic (FOL): analogy with Propositional Logic

Truth table in propositional logic is similar to Model $M = \langle D, I \rangle$ in FOL

Truth table consists of various truth assignments (σ) and to check if $\sigma \models F$, we need to check if $F(\sigma) = 1$ in truth table. Similarly in FOL, we need to check if $I^{M,\sigma}$ is 1 or not!

Given a formula, the truth table is fixed, however in FOL, model M depends on the Domain. We can have $M_1 = \langle D_{real}, I \rangle, M_2 = \langle D_{int}, I \rangle, \dots, \dots$

First Order Logic (FOL): Validity and Satisfiability

When $M, \sigma \models F$, we say that M satisfies F with σ

A formula F is

Valid – iff $M, \sigma \models F$ holds for all models M and assignments σ .

Satisfiable – iff there is some model M , and some assignment σ such that $M, \sigma \models F$

Unsatisfiable – iff it is not satisfiable

True – F is called **True in M** , iff **some** assignment σ in M , $M, \sigma \models F$

First Order Logic (FOL): Validity and Satisfiability

$\forall x(x = x)$ Valid.

$\exists x(x \neq x)$ Unsatisfiable.

$\exists xP(x)$ Depends on given M, σ . Suppose in a given $M, I(P)$ is empty.
Then, in that M , Formula is False.
but, it may happen that there exists another M , under which it might be True.

First Order Logic (FOL): Validity and Satisfiability

Decidability – a solution to a decision problem is an algorithm that takes problem as input, and **always terminates**, producing a correct “yes” or “no” output

Valid – iff $M, \sigma \models F$ holds for all models M and assignments σ .

Satisfiable – iff there is some model M , and some assignment σ such that $M, \sigma \models F$

The decision problem of validity of FOL is **undecidable** (given any FOL formula F)

The decision problem of of FOL is **undecidable** (given any FOL formula F)

First Order Logic (FOL): Equivalent Formulas

F and G are called equivalent to each other if and only if:

For each model and assignment (M, σ) , if $M, \sigma \models F$, then $M, \sigma \models G$ (notation $F \models G$)

and for each model and assignment (M', σ') if $M', \sigma' \models G$, then $M', \sigma' \models F$ (notation $G \models F$)

Exercise: Is $\neg \forall x P(x) \equiv \exists x \neg P(x)$

Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn't have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M $\langle D = \text{set of natural numbers} \rangle$

- we can consider only theory of natural numbers.
- we also consider the set of valid sentences over natural numbers.

For example: $\forall x x + 1 \neq 0$

Intro to SMT: Satisfiability Modulo Theory

Theory = Subject Knowledge + FOL

Model $M < D = \text{set of natural numbers} >$

- we can consider only theory of natural numbers.
- we also consider the set of valid sentences over natural numbers.

For example: $\forall x x + 1 \neq 0$

A theory T is a set of sentences closed under implications

If $T \rightarrow F$, then $F \in T$

Intro to SMT: Satisfiability Modulo Theory

Is $F = \exists x, x > 0$ satisfiable? Valid? In FOL?

Yes, it is satisfiable!

$M : \langle D = \mathbb{N}, I \rangle$ F is satisfiable.

No, it is not valid, $M : \langle D = \mathbb{Z}^-, I \rangle$

A formula F is T -satisfiable if there is model M such that $M \models T \cup F$.

We write T -satisfiability as $M \models_T F$.

T : set of true sentences in arithmetic over natural numbers.

Is $T \cup F$ satisfiable?, we need to restrict our domain to set of natural numbers, and assume the knowledge of natural number arithmetic like $\forall x x > 0, \forall x x + 1 \neq 0$

Yes, it is satisfiable!

$M \models_T F$

Intro to SMT: Satisfiability Modulo Theory

T : set of true sentences in arithmetic over natural numbers.

Is $T \cup F$ satisfiable ?, we need to restrict our domain to set of natural numbers, and assume the knowledge of natural number arithmetic like $\forall x x > 0, \forall x x + 1 \neq 0$

Is $F = \exists x, x > 0$ T -satisfiable?

Yes, it is T -satisfiable!

$M \models_T F$

Also, $T \models F$

A formula F is T -valid if $T \models F$. We write T -validity as $\models_T F$

Intro to SMT: Satisfiability Modulo Theory

Is $F = \exists x, x < 0$ satisfiable? Valid? In FOL?

Yes, it is satisfiable!

$M : \langle D = \mathbb{Z}, I \rangle$ F is satisfiable.

No, it is not valid, $M : \langle D = \mathbb{N}, I \rangle$

T : set of true sentences in arithmetic over natural numbers.

Is $F = \exists x, x < 0$ T -satisfiable? T -Valid?

No, it is unsatisfiable, $\not\models T_{\mathbb{N}} \cup F$

<https://smt-lib.org/logics.shtml>