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Operate On And Produce

Connectives  Propositions A Proposition

Predicates Objects A Proposition

Functions Objects An Object

( ↔ , → , ∧ , . . )



First Order Logic (FOL): Syntax

Well-Formed Formula (wff ) of FOL are composed of six types of symbols (not including  
Parenthesis). 
 
1. Constant symbols — representing objects. 

2. Functions symbols — functions from pre-specified number of objects to an object. 

3. Predicate symbols — more like specify properties to objects. Have specified arity.   
                                           Zero arity predicate symbols are treated as propositional symbols.  

4. Variable symbols — will be used to quantify over objects.  

5. Universal and existential quantifiers — will be used to indicate the type of quantification. 

6. Logical connectives and negation. 



First Order Logic (FOL): Syntax

Formula  -> Atomic Formula 
                   |   Formula Connective Formula 
                   |  Quantifier Variable Formula 
                   |   Formula 
                   |  (Formula)

¬

Atomic Formula ->  where 
 are Terms, n is arity. 

            

P(T1, …, Tn)
P ∈ Predicates, Ti

Term   -> c, where  CONST.  
              |  v, where  
              | , where  Functions,  are Terms,       
n is arity of F.            

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

Connective ->  
Quantifier -> 

↔ | ∧ | ∨ | →
∀ |∃



First Order Logic (FOL): Syntax

Is it a WFF?  
TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive. 

Term   -> c, where  CONST.  
              |  v, where  
              | , where  Functions,  are Terms,       
n is arity of F.            

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti



First Order Logic (FOL): Additional Terminology

Ground Terms — Terms without variables.  Refers to Objects. John, Fatherof(John) 

Ground Formulas — Formulas without variables.  

TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Closed Formulas — formulas in which all variables are associated with quantifier. 

∀x Number(x) → Number( + (x,1))
∀x GreaterThan(x, y) → LessThan(y, x) Y is not associated with quantifier. 

Free variables — variables in a formula that don’t have any quantifier. Typically free variables 
are treated as being implicitly universally quantified variables.



First Order Logic (FOL): Additional Terminology

All Birds can Fly. 

∀x (Bird(x) → Fly(x))

Not all Birds can Fly. 

¬(∀x (Bird(x) → Fly(x)))

≡ ∃x (Bird(x) ∧ ¬Fly(x))

All Birds cannot Fly. 

∀x (Bird(x) → ¬Fly(x))

≡ ¬(∃x (Bird(x) ∧ Fly(x)))



First Order Logic (FOL): Semantics Models of FOL!

Model of FOL is a tuple < D, I >
D — non-empty domain of objects (set of objects, finite, infinite, uncountable)  
I — Interpretation function. 

Interpretation — assign a meaning.  

If c is a constant symbol then  is an object in D. I(c)

If f is a function  symbol  of arity n, then  is a total function from I( f ) Dn ↦ D

Defined for all inputs: 
Single output per input

If p is a predicate symbol  of arity n, then  is a subset of .  If a tuple 
, then we say that p is True for tuple O. 

I(p) Dn

O = < o1, …, on > ∈ I(p)



First Order Logic (FOL): Semantics

D = {BOB, JOHN, NULL} Bob is taller than John.  
John is father of Bob. 

If c is a constant symbol then  is an object in D. I(c)

If f is a function  symbol  of arity n, then  is a total function from I( f ) Dn ↦ D

If p is a predicate symbol  of arity n, then  is a subset of .  If a tuple 
, then we say that p is True for tuple O. 

I(p) Dn

O = < o1, …, on > ∈ I(p)

I(Bob) = BOB

I(FatherOf )(BOB) = JOHN I(FatherOf )(JOHN) = NULL . I(FatherOf )(NULL) = NULL .

I(TallenThan) = { < BOB, JOHN > }



First Order Logic (FOL): Semantics How do we handle variables?

Given a model  and a variable x, and object ,  
Extended Model  as a model that is identical to M, except that I is extended to  
interpret x as o. 

M = < D, I > o ∈ D
M[x → o]

∃x TallerThan(x, FatherOf(x))

If we can find an object o in D such that following is True: 

TallerThan(x, FatherOf(x))M[x→o]



First Order Logic (FOL): Semantics

F = TallerThan(x, FatherOf(x))

D = {BOB, JOHN, NULL)

I(Bob) = {BOB}, I(John) = {JOHN}, I(NULL) = {NULL}

I(FatherOf )(BOB) = {JOHN}, I(FatherOf )(JOHN) = {NULL}, I(FatherOf )(NULL) = {NULL}

I(TallerThan) = < BOB, JOHN >

Is F True, with respect to M<D,I>,  where variable assignment 
 = <John>?σ



First Order Logic (FOL): Semantics
How do we define the meaning of terms and formulas relative to a given model  
Notation: Interpretation of a string(terms/formula)  relative to a model M, and an assignment 

 by 

M = < D, I >
F

σ FM,σ

Interpreting Terms:

If t is a constant or a variable, then we have: 
                                                                             tM,σ = I(t) = I(John) = JOHN.xM,σ

If t is a function , then we have: 
                                                              

f(t1, …, tn)
tM,σ = I( f )(tM,σ

1 , …, tM,σ
n )

 = FatherOf(x)M,σ I(FatherOf )(xM,σ)
 = FatherOf(x)M,σ I(FatherOf )(JOHN)
 = FatherOf(x)M,σ NULL



First Order Logic (FOL): Semantics

= I(John) = JOHN.xM,σ  = FatherOf(x)M,σ NULL

Interpreting Formulas: 

     1. Atomic Formulas  of the form F p(t1, …, tm)

FM,σ ={True if < tM,σ
1 , …, tM,σ

n > ∈ I(p)

False otherwise.

TallerThanF,σ = < JOHN, NULL >

 is False.TallerThanM,σ ∉ I(TallerThan), FM,σ



First Order Logic (FOL): Semantics

Interpreting Formulas: 

     1. Atomic Formulas  of the form F p(t1, …, tn)

FM,σ ={ True if < tM,σ
1 , …, tM,σ

n > ∈ I(p)

False otherwise.

2. If  is of the form  where  is logical connective: 

                

F F1 o F2 o

FM,σ = FM,σ
1 o FM,σ

2

3. If  is of the form : 

                

F ¬F1

FM,σ = ¬FM,σ
1



First Order Logic (FOL): Semantics

4. If  is of the form  

                                      =  

5. If  is of the form  

F ∃xF1

FM,σ

F ∀xF1

False otherwise.
{ True if there exists an  such that  is Trueo ∈ D FM,σ[x→o]

1

FM,σ ={
False otherwise.

True if for all   ,  is Trueo ∈ D FM[x→o]
1



First Order Logic (FOL): Semantics

F = ∃x TallerThan(x, FatherOf(x))

[∃x TallerThan(x, FatherOf(x))]M

This is true iff we can find an object o in D such that: 

                                           TallerThan(x, FatherOf(x))M[x→o]

We need to find a model M such that following is True: 

BOB is such an object.

How about  ?F = ∀x TallerThan(x, FatherOf(x))



First Order Logic (FOL): Semantics

F = ∀x TallerThan(x, FatherOf(x))

[∀x TallerThan(x, FatherOf(x))]M

This is true iff for all objects o in D the following is True: 

                                           TallerThan(x, FatherOf(x))M[x→o]

We need to find a model M such that following is True: 

We saw that  is False.  TallerThan(x, FatherOf(x))M[x→JOHN]

 is False. F = ∀x TallerThan(x, FatherOf(x))



First Order Logic (FOL): Semantics

Assignment:  For a domain D is a function  σ : X ↦ D
Where X is set of variables 
 of formula 

Given M = (D,I) and given an assignment , satisfaction relation  is follows: 
  

 
 — iff   

 — iff   
 — iff  and  
 — iff  or  
 —  iff  or  

 — iff  for all  
 — iff  for some 

σ M, σ ⊧ F
M, σ ⊧ ⊤
M, σ ⊭ ⊥
M, σ ⊧ P(t1, …, tn) I(P)((tM

1 , …, tM
n )σ) = 1

M, σ ⊧ ¬F M, σ ⊭ F
M, σ ⊧ F ∧ G M, σ ⊧ F M, σ ⊧ G
M, σ ⊧ F ∨ G M, σ ⊧ F M, σ ⊧ G
M, σ ⊧ F → G M, σ ⊭ F M, σ ⊧ G
M, σ ⊧ ∀xF M, σ[x ↦ a] ⊧ F a ∈ D
M, σ ⊧ ∃xF M, σ[x ↦ a] ⊧ F a ∈ D



First Order Logic (FOL): analogy with Propositional Logic

Truth table in propositional logic is similar to Model  in FOLM = < D, I >

Truth table consists of various truth assignments ( ) and to check if , we need to 
check if  in truth table. Similarly in FOL, we need to check if  is 1 or not!

σ σ ⊧ F
F(σ) = 1 IM,σ

Given a formula, the truth table is fixed, however in FOL, model M depends on the 
Domain. We can have M1 = < Dreal, I > , M2 = < Dint, I > , …, . .



First Order Logic (FOL): Validity and Satisfiability

When , we say that  satisfies F with M, σ ⊧ F M σ

A formula  isF

Valid — iff  holds for all models  and assignments .M, σ ⊧ F M σ

Satisfiable — iff there is some model , and some assignment  such that M σ M, σ ⊧ F

Unsatisfiable — iff it is not satisfiable

True — F is called True in M,  iff some assignment  in M,  σ M, σ ⊧ F



First Order Logic (FOL): Validity and Satisfiability

∀x(x = x) Valid. 

∃x(x ≠ x) Unsatisfiable. 

∃xP(x) Depends on given  .  Suppose in a given , I(P) is empty.  
Then, in that M, Formula is False.  
but, it may happen that there exists another M, under which it might be True. 

M, σ M



First Order Logic (FOL): Validity and Satisfiability

Decidability — a solution to a decision problem is an algorithm that takes problem as 
input, and always terminates,  producing a correct “yes” or “no” output

Valid — iff  holds for all models  and assignments .M, σ ⊧ F M σ

Satisfiable — iff there is some model , and some assignment  such that M σ M, σ ⊧ F

The decision problem of validity of FOL is undecidable (given any FOL formula F)

The decision problem of of FOL is undecidable (given any FOL formula F)



First Order Logic (FOL): Equivalent  Formulas 

F and G are called equivalent to each other if and only if: 

For each model and assignment ( ), if , then   (notation 
) 

and for each model and assignment  if , then   
(notation )

M, σ M, σ ⊧ F M, σ ⊧ G
F ⊧ G

(M′￼, σ′￼) M′￼, σ′￼ ⊧ G M′￼, σ′￼ ⊧ F
G ⊧ F

Exercise: Is  ¬∀xP(x) ≡ ∃x¬P(x)



Intro to SMT: Satisfiability Modulo Theory

FOL: grammar for a rational abstract thinking

FOL: Doesn’t have a knowledge of any specific matter.

Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers> 

 — we can consider only theory of natural numbers. 
— we also consider the set of valid sentences over natural numbers. 

For example: ∀x x + 1 ≠ 0



Intro to SMT: Satisfiability Modulo Theory
Theory = Subject Knowledge + FOL

Model M <D = set of natural numbers> 

 — we can consider only theory of natural numbers. 
— we also consider the set of valid sentences over natural numbers. 

For example: ∀x x + 1 ≠ 0

A theory T is a set of sentences closed under implications

If , then T → F F ∈ T



Intro to SMT: Satisfiability Modulo Theory

A formula F is T-satisfiable if there is model M such that .  
We write T -satisfiability as .

M ⊧ T ∪ F
M ⊧T F

Is F =   satisfiable? Valid ? In FOL?∃x, x > 0

Yes, it is satisfiable!  
 F is satisfiable. M :< D = ℕ, I >

No, it is not valid, M :< D = ℤ−, I >

T:  set of true sentences in arithmetic over natural numbers.  

Is  satisfiable ?, we need to restrict our domain to set of natural numbers, and assume  
the knowledge of natural number arithmetic like 

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is satisfiable!  
  M ⊧T F



T:  set of true sentences in arithmetic over natural numbers.  

Is  satisfiable ?, we need to restrict our domain to set of natural numbers, and assume  
the knowledge of natural number arithmetic like 

T ∪ F
∀x x > 0,∀x x + 1 ≠ 0

Yes, it is T-satisfiable!  
  M ⊧T F

Intro to SMT: Satisfiability Modulo Theory

Also,  T ⊧ F A formula F is T-valid if . We write T -validity as  T ⊧ F ⊧T F

Is F =   T-satisfiable? ∃x, x > 0



Intro to SMT: Satisfiability Modulo Theory

Is F =   satisfiable? Valid ? In FOL?∃x, x < 0

T:  set of true sentences in arithmetic over natural numbers.  

Yes, it is satisfiable!  
 F is satisfiable. M :< D = ℤ, I >

No, it is not valid, M :< D = ℕ, I >

Is F =     T-satisfiable? T-Valid ?∃x, x < 0

No, it is unsatisfiable,  ⊭ Tℕ ∪ F



https://smt-lib.org/logics.shtml


