

COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

<https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html>

DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

$DPLL(F, m = \emptyset) \{$

1. If F is True under m then Return SAT
2. If F is False under m then Return UNSAT
3. If there is a unit literal l under m then Return $DPLL(F, m[l \mapsto 1])$
4. If there is a unit literal $\neg l$ under m then Return $DPLL(F, m[l \mapsto 0])$

Backtracking at
conflict

Unit Propagation

Choose an unassigned variable p , and random bit $b \in \{0,1\}$

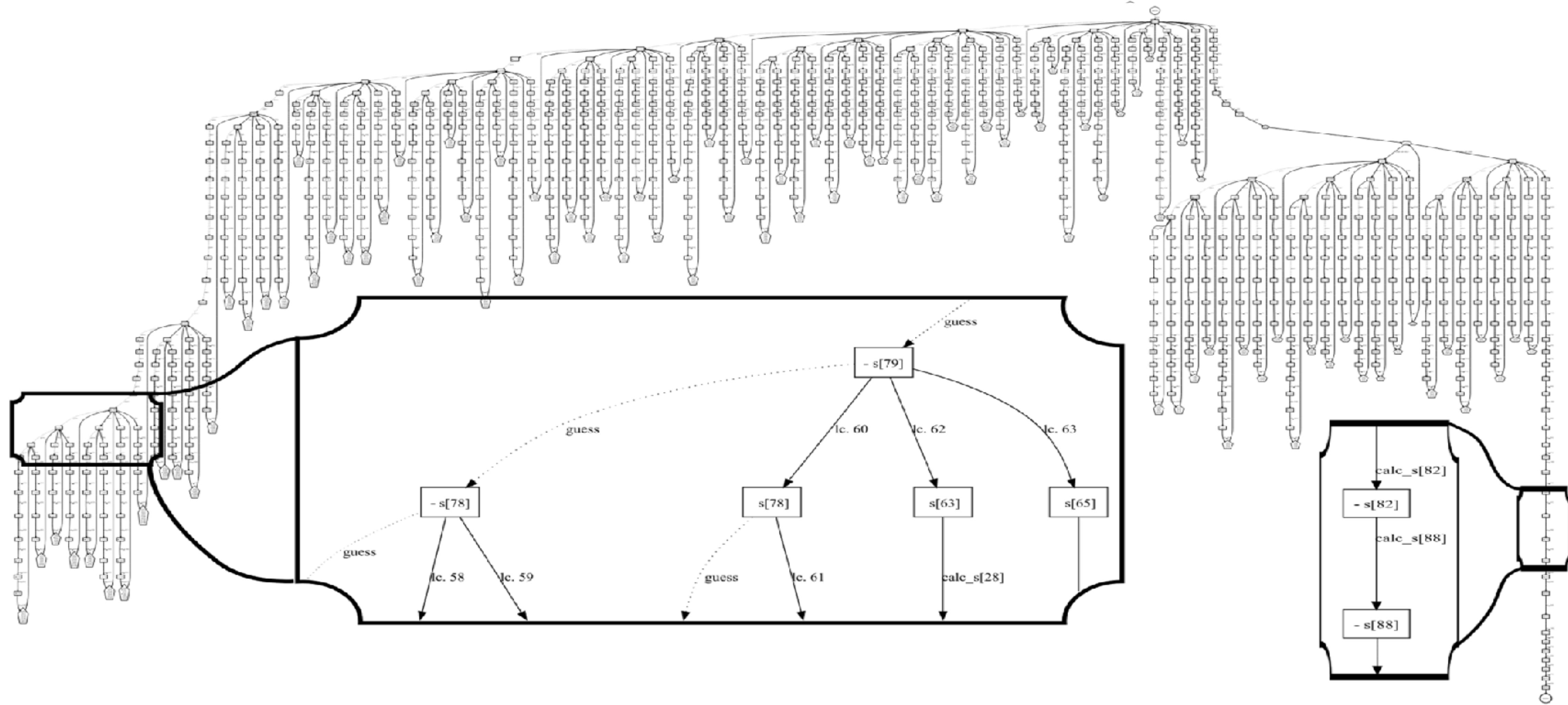
5. If $DPLL(F, m[p \mapsto b]) == \text{SAT}$ then Return SAT

Else Return $DPLL(F, m[p \mapsto 1 - b])$

}

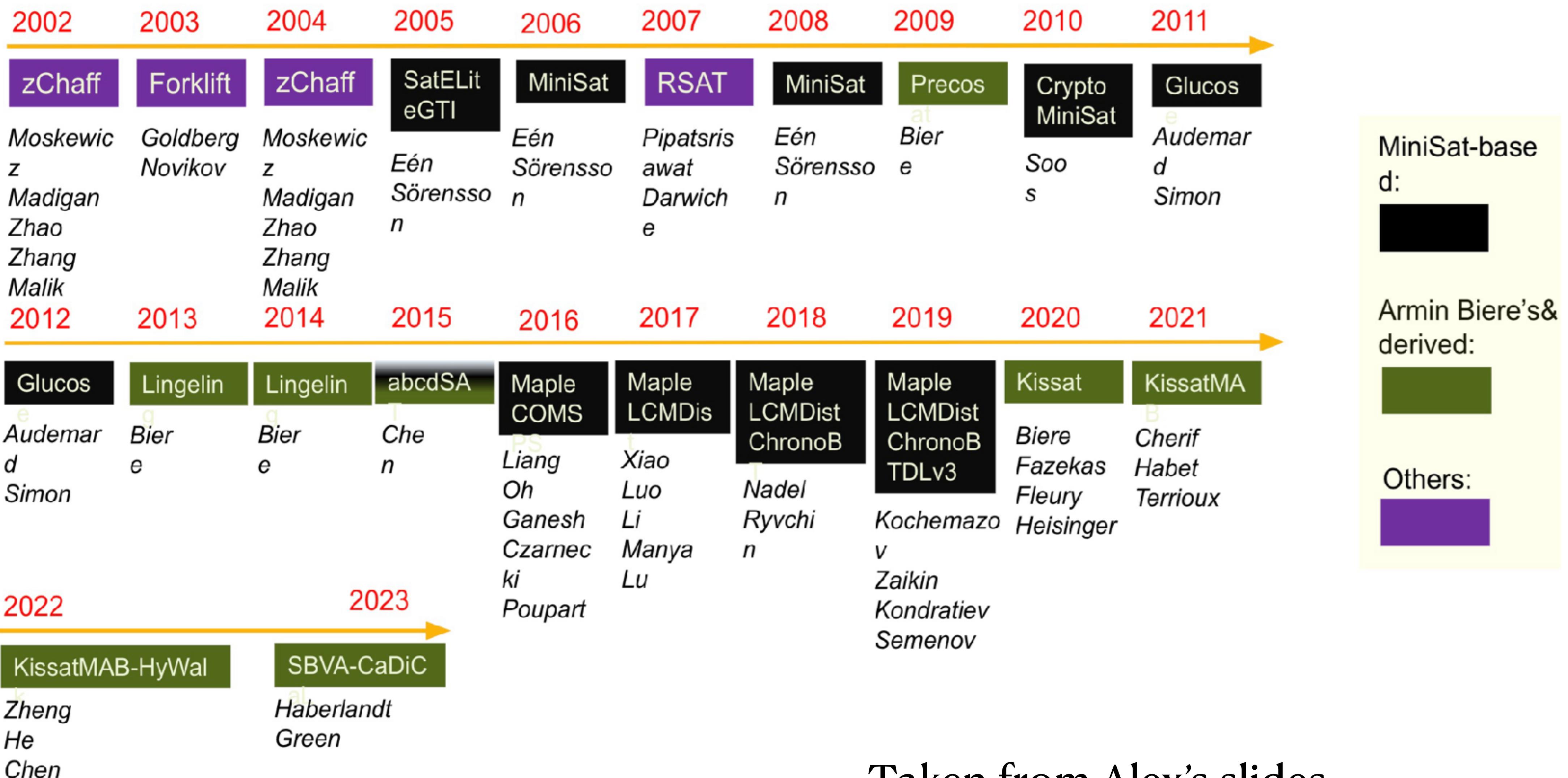
CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m .
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.
3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a decision level upto which the solver needs to backtrack.



Taken from Mate Soos 's slides.

SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)



Taken from Alex's slides.

CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m .
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

Heuristics: which variables to pick, what value to assign?

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a decision level upto which the solver needs to backtrack.

Heuristics: how to learn a small conflict clause and unto which level to backtrack?

Heuristics: how to learn a small conflict clause and upto which level to backtrack?

AnalyzeConflict(m, F): some choices of clauses are found to be better than others.

Notations:

UIP (Unique Implication Point)

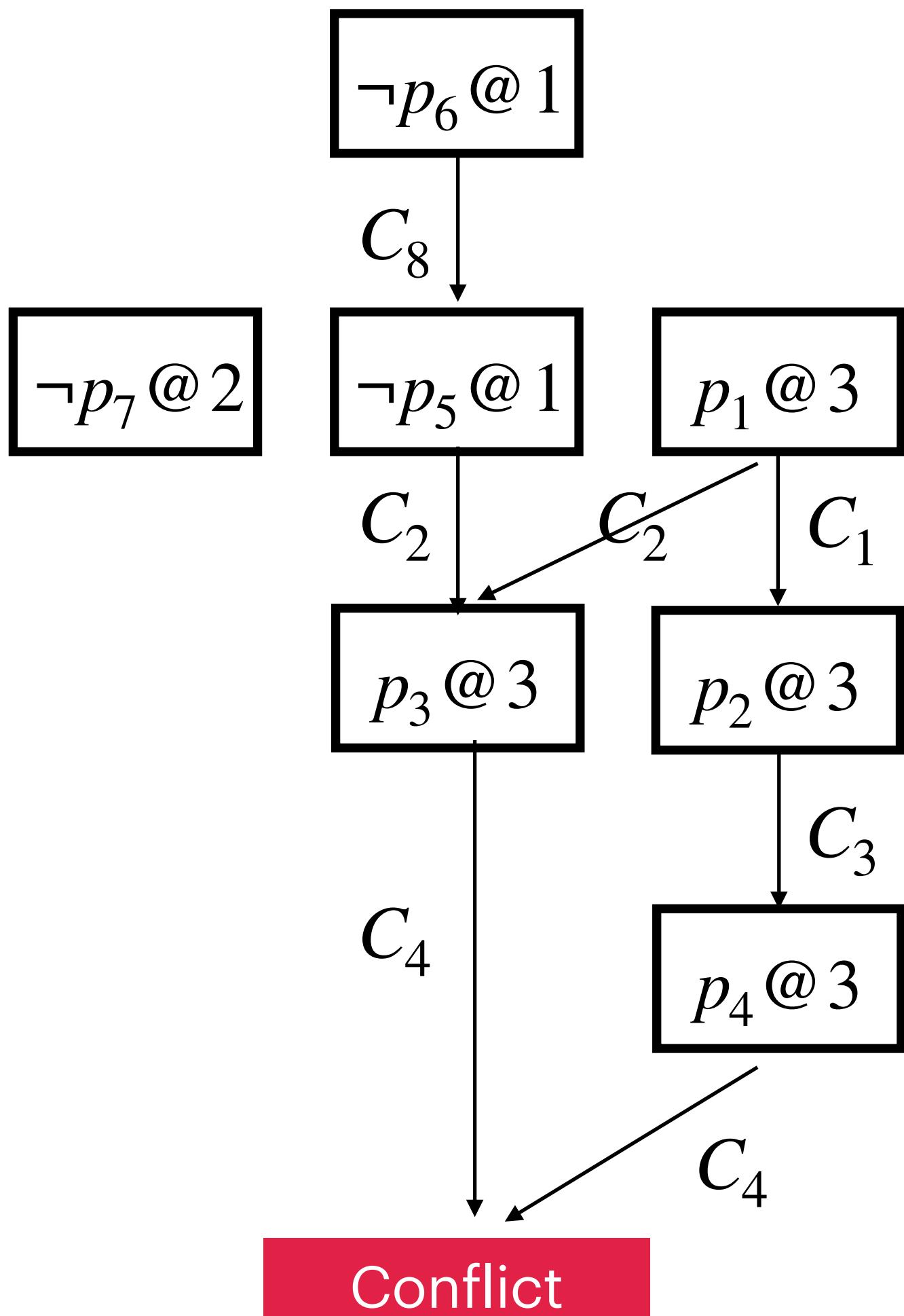
In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.

UIP @ level 1:

UIP @ level 2:

UIP @ level 3:



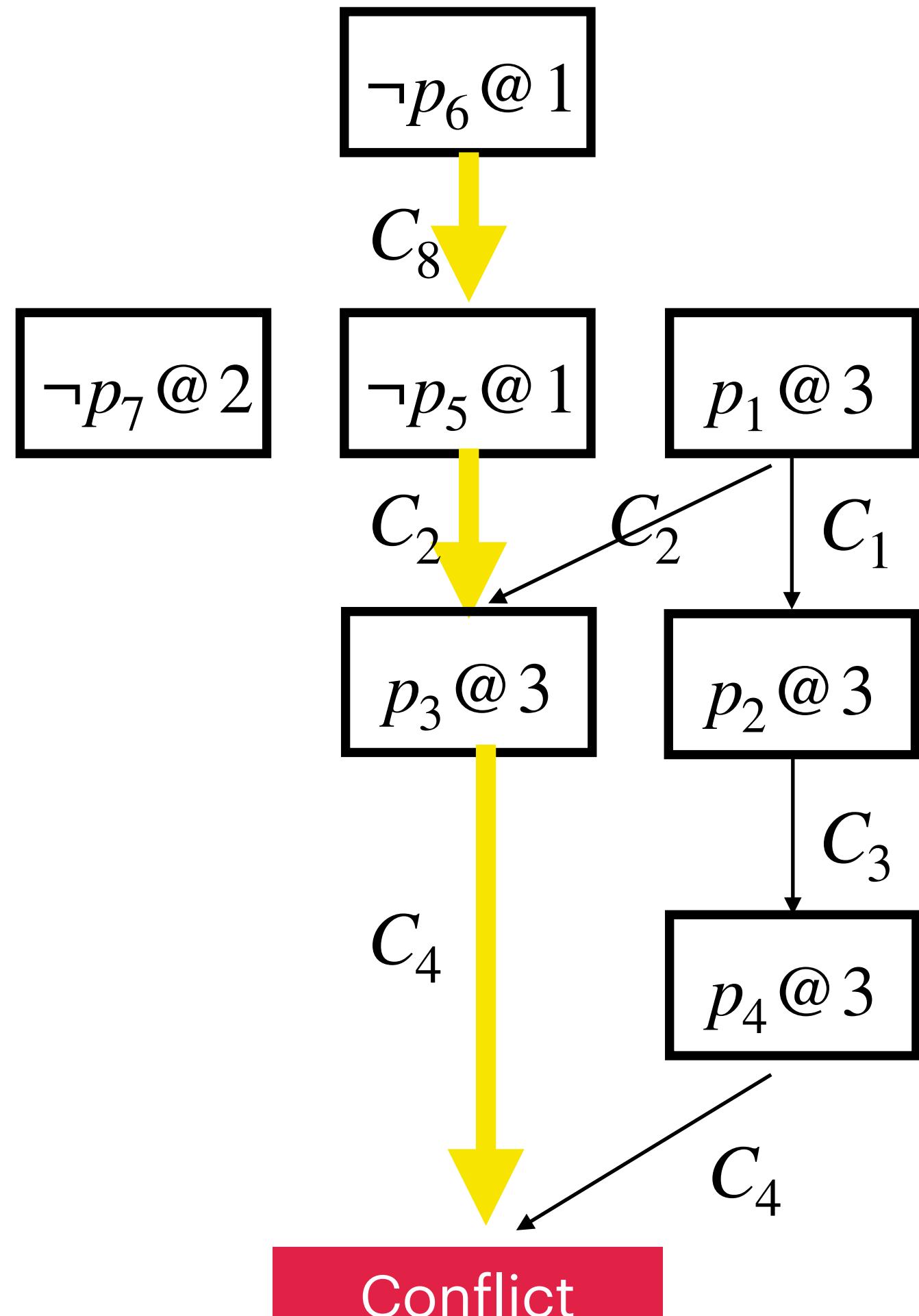
Implication Graph.

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.

UIP @ level 1: $\neg p_6 @ 1, \neg p_5 @ 1$

UIP @ level 2:

UIP @ level 3:



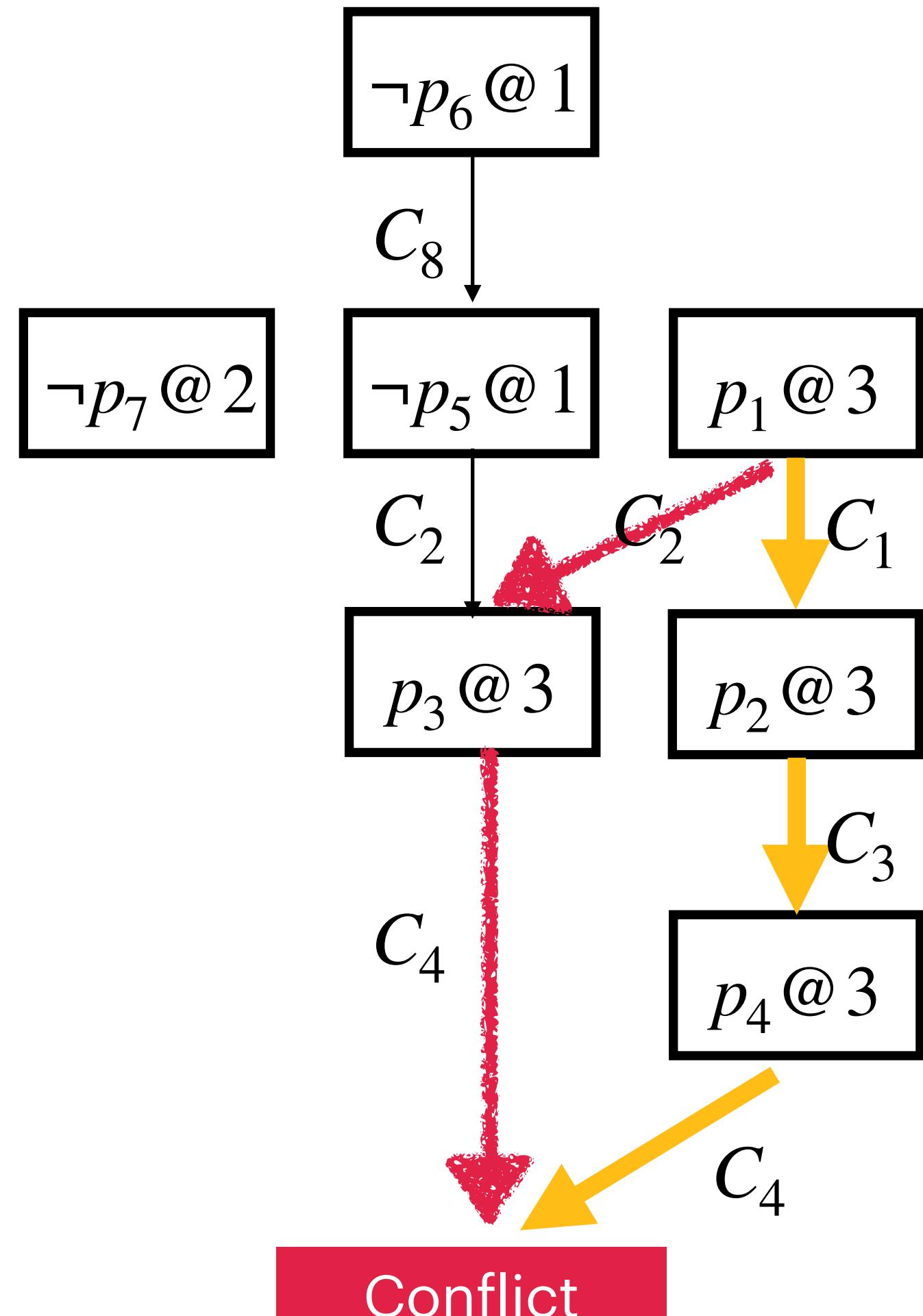
Implication Graph.

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.

UIP @ level 1: $\neg p_6 @ 1, \neg p_5 @ 1$

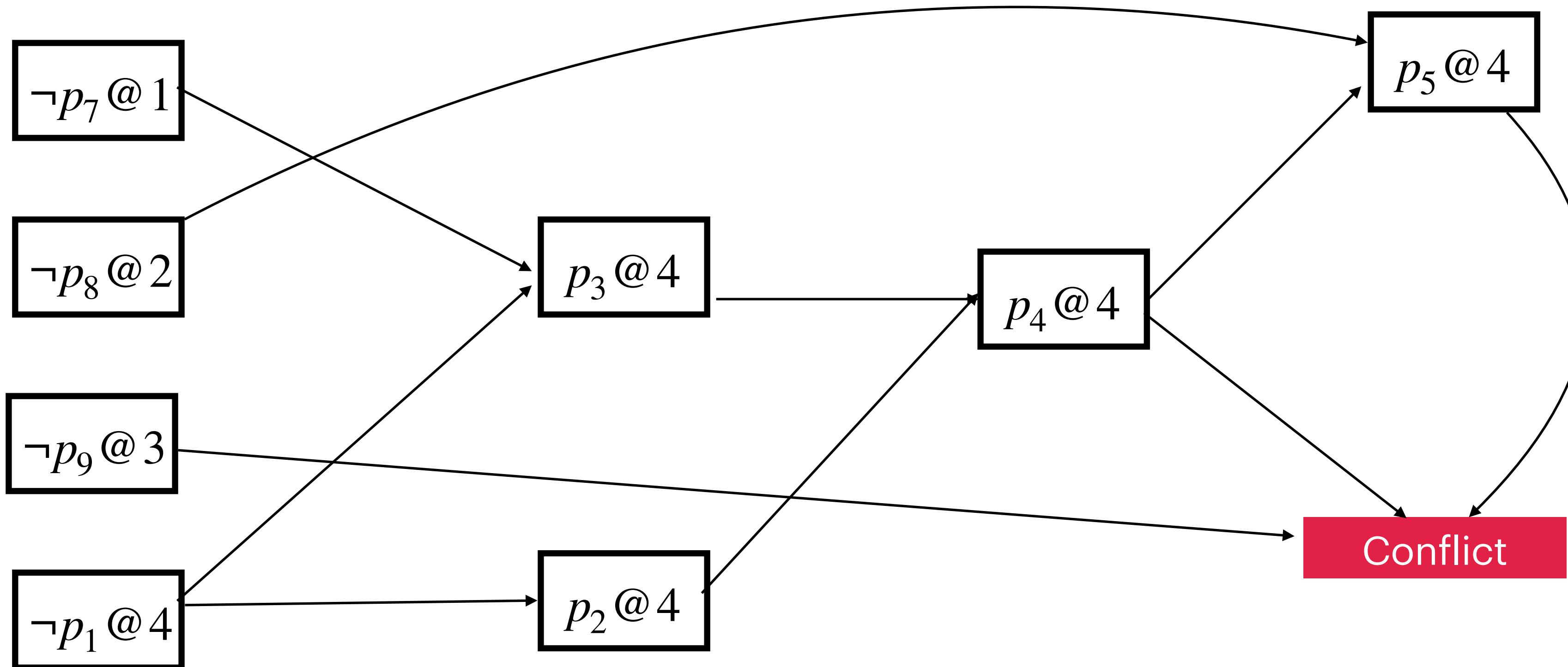
UIP @ level 2:

UIP @ level 3: $p_1 @ 3$



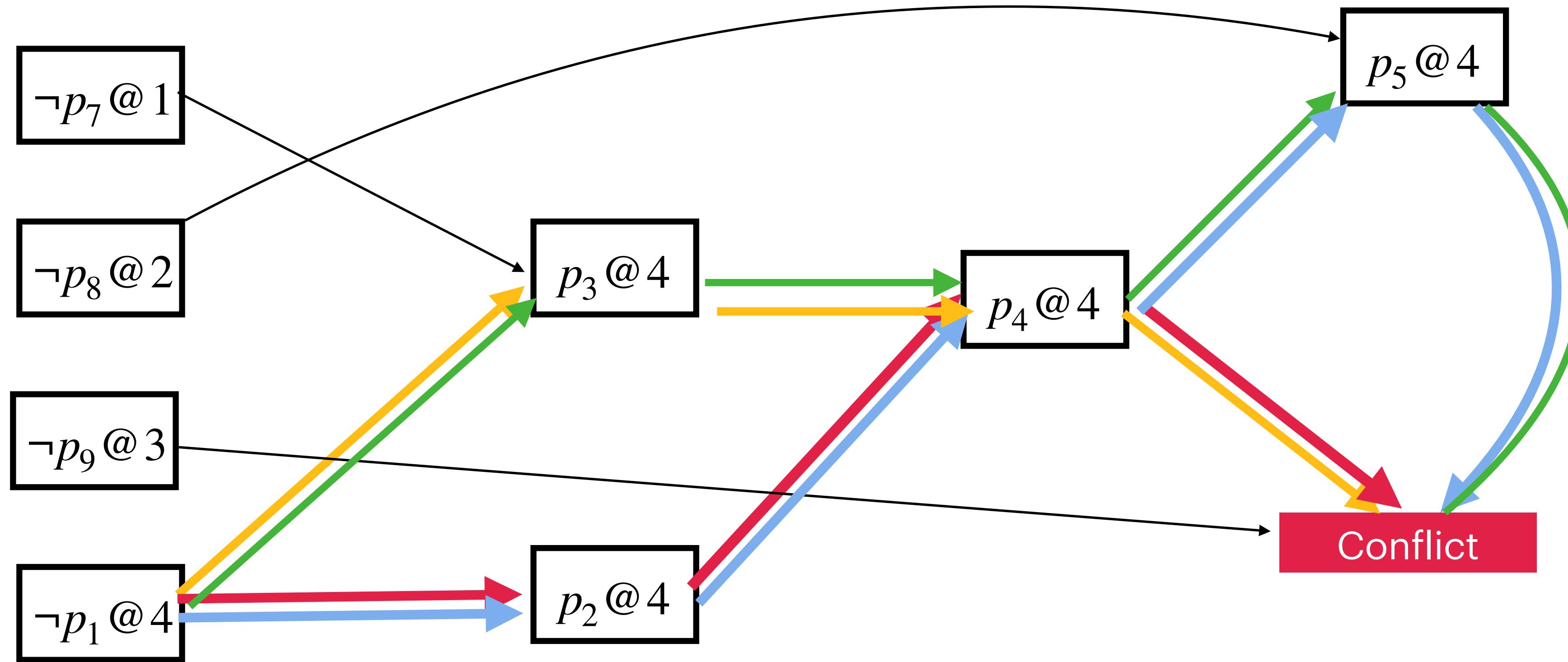
Implication Graph.

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.



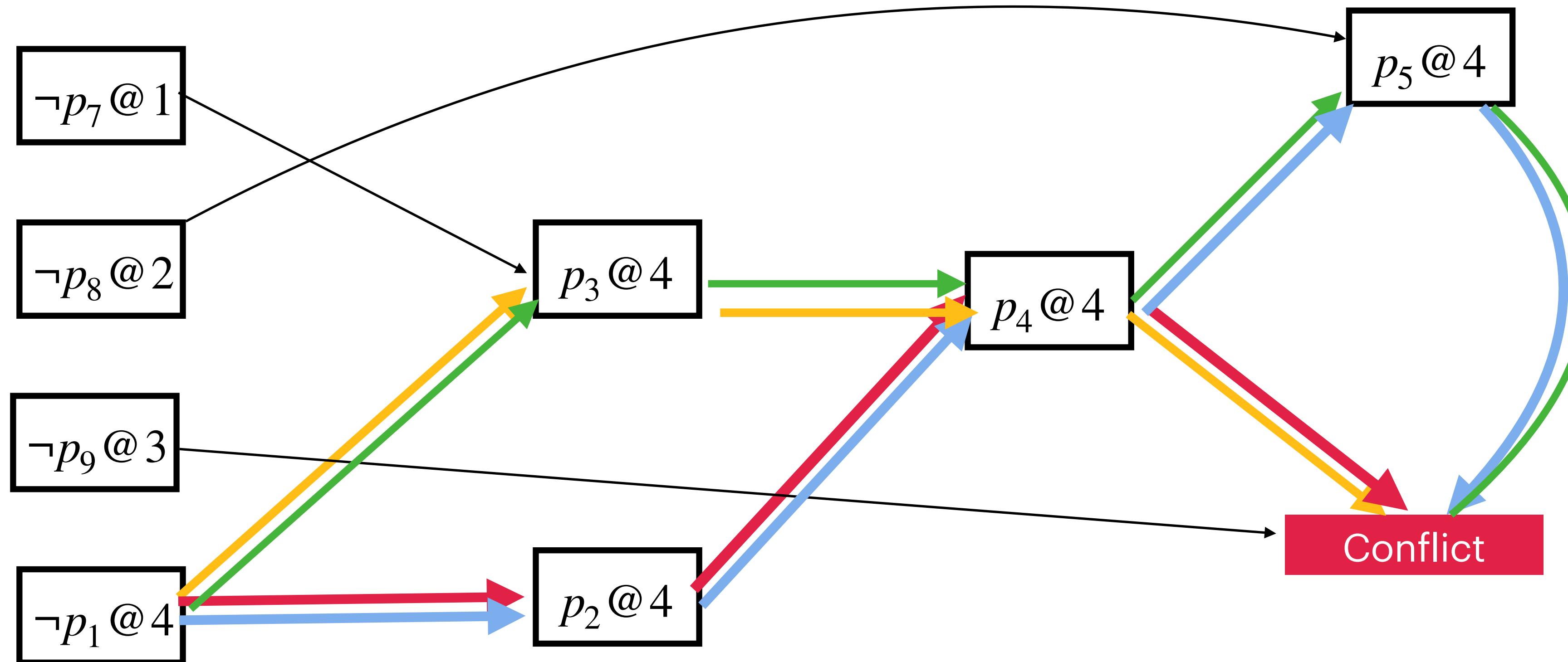
UIP @ 4 = ???

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.



UIP @ 4 = ???

UIP points: In an implication graph, node “ $l @ d$ ” is a UIP at decision level d if “ $l @ d$ ” occurs in each path from d^{th} decision literals to the conflict.



$$\text{UIP } @ 4 = \neg p_1 @ 4, p_4 @ 4$$

First UIP Point:
 $p_4 @ 4$

Last UIP Point:
 $\neg p_1 @ 4$

UIP cuts to analyze conflicts:

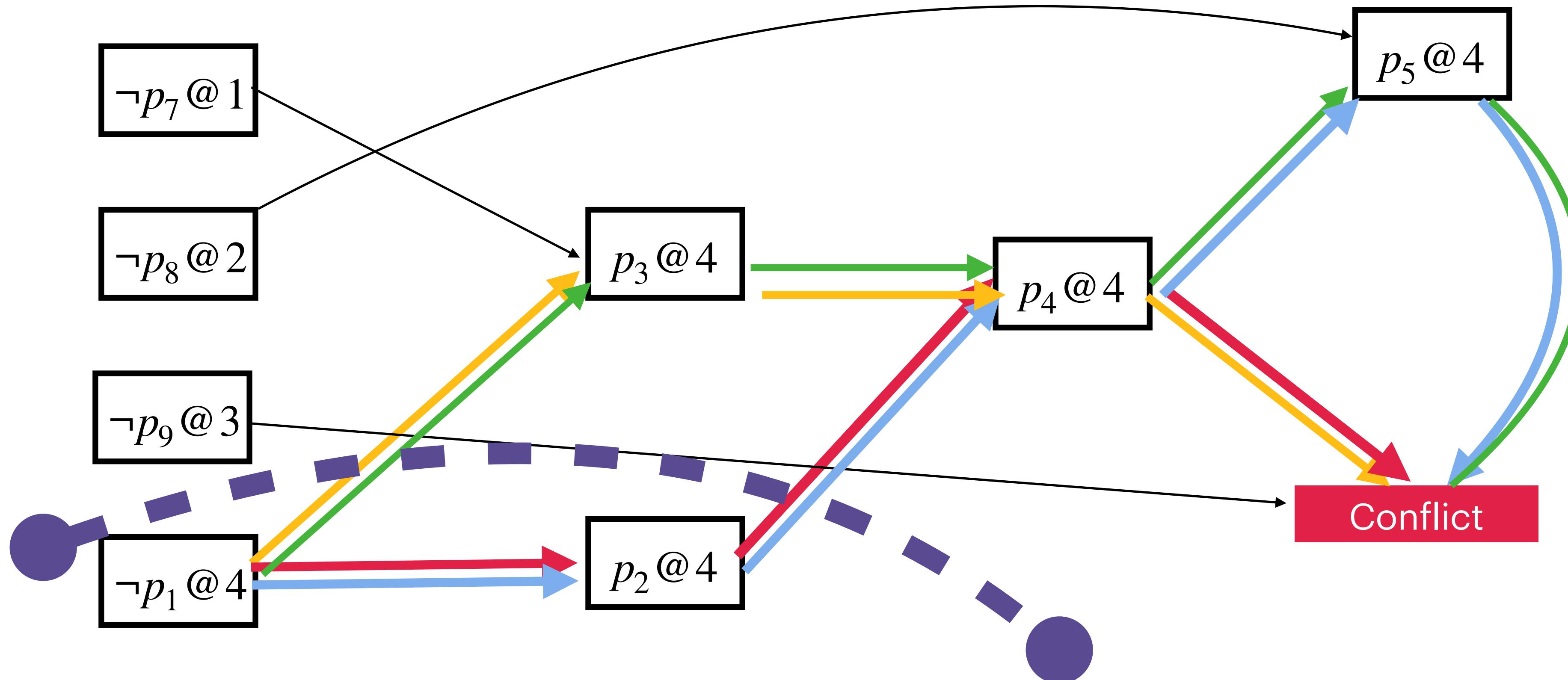
If l is UIP, then corresponding UIP cut is (A, B) of the implication graph.

Where,

B contains all the successors of l from which there is a path to conflict.

A contains the rest.

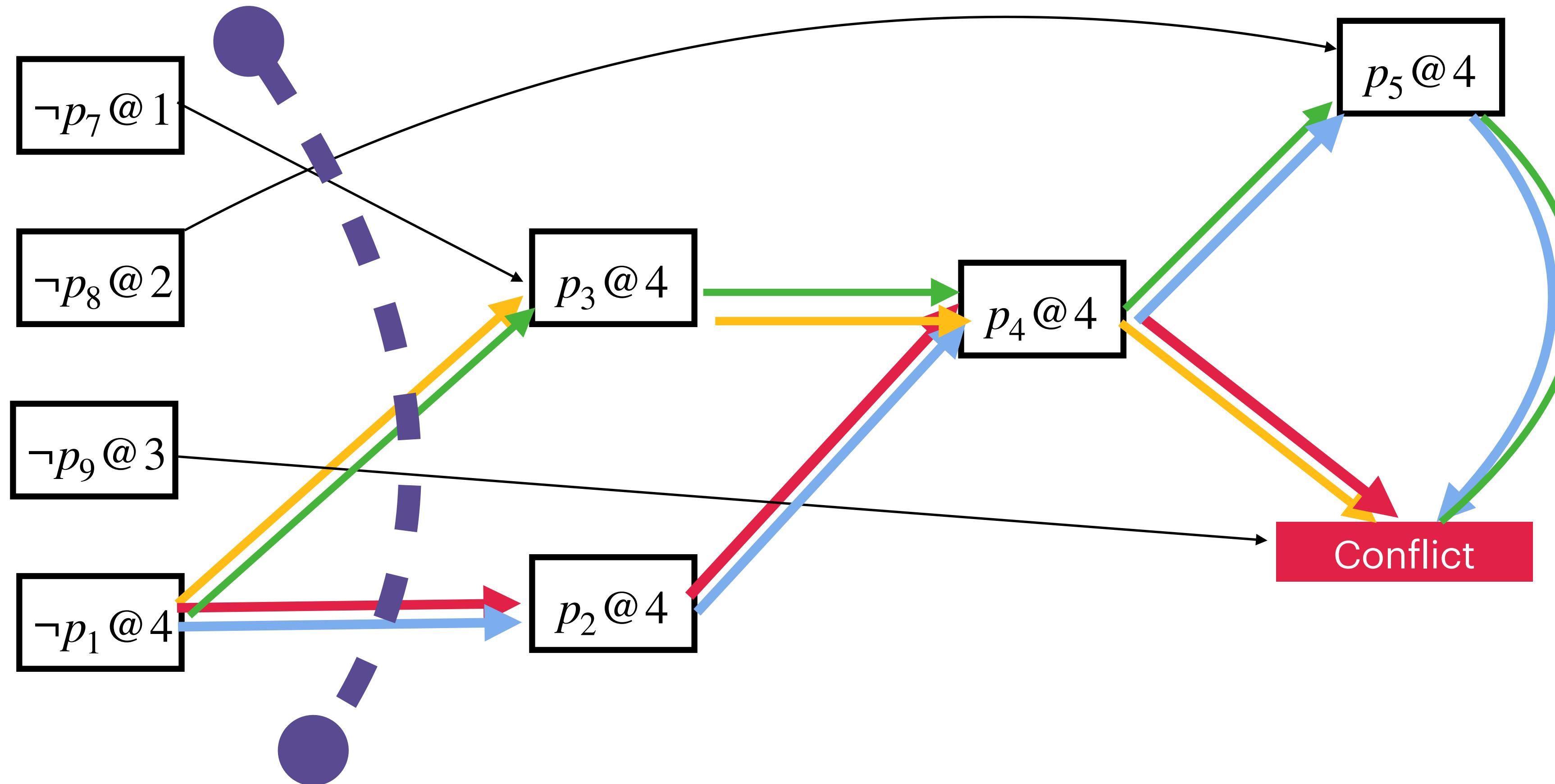
UIP cuts to analyze conflicts: If l is UIP, then corresponding UIP cut is (A, B) of the implication graph, where B contains all the successors of l from which there is a path to conflict, and A contains the rest.



UIP @ 4 = $\neg p_1 @ 4, p_4 @ 4$

Is it a UIP cut?

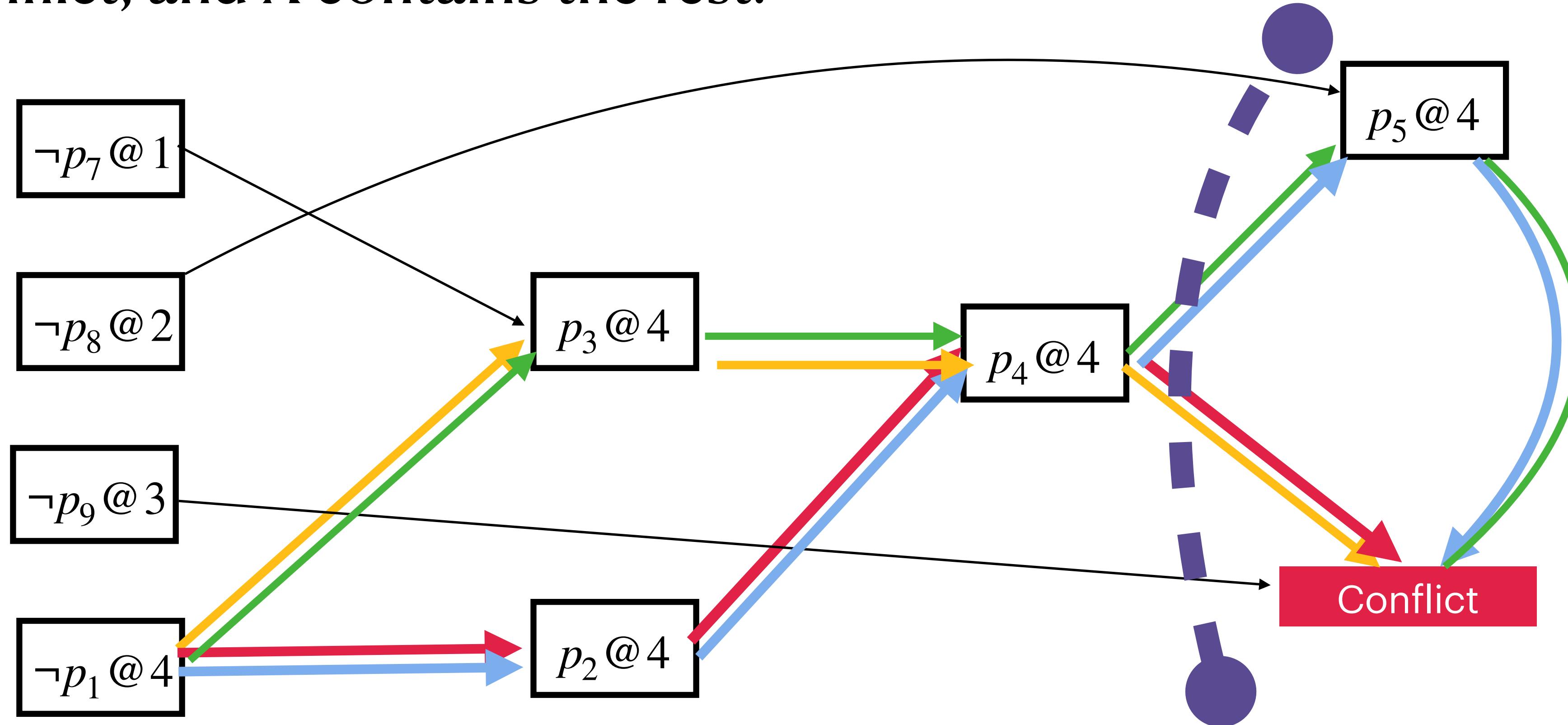
UIP cuts to analyze conflicts: If l is UIP, then corresponding UIP cut is (A, B) of the implication graph, where B contains all the successors of l from which there is a path to conflict, and A contains the rest.



UIP @ 4 = $\neg p_1 @ 4, p_4 @ 4$

Is it a UIP cut? Yes, with respect to $\neg p_1 @ 4$

UIP cuts to analyze conflicts: If l is UIP, then corresponding UIP cut is (A, B) of the implication graph, where B contains all the successors of l from which there is a path to conflict, and A contains the rest.



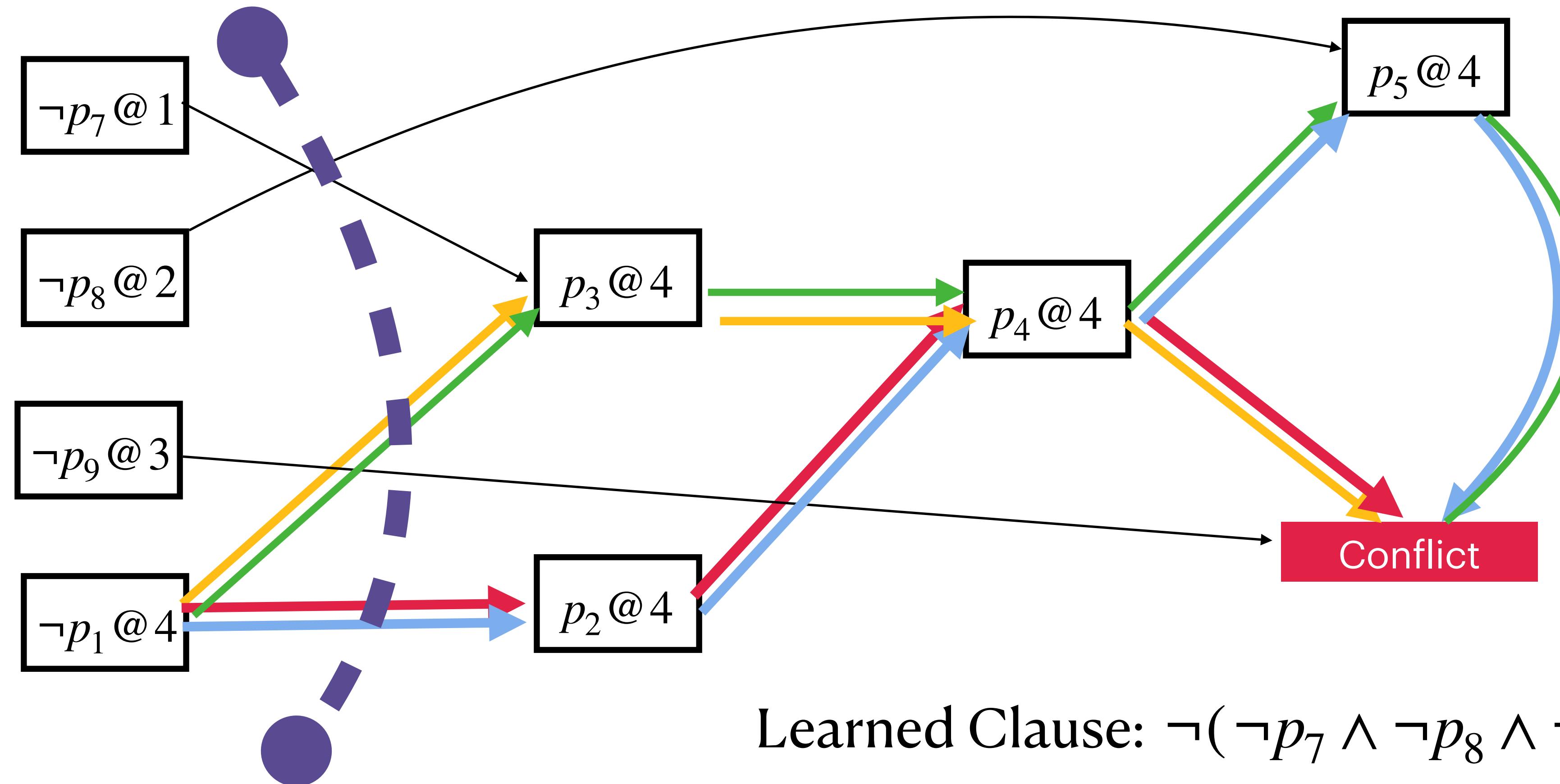
UIP @ 4 = $\neg p_1 @ 4, p_4 @ 4$

Is it a UIP cut?

Yes, with respect to $p_4 @ 4$

Learned Conflict Clause from UIP cut

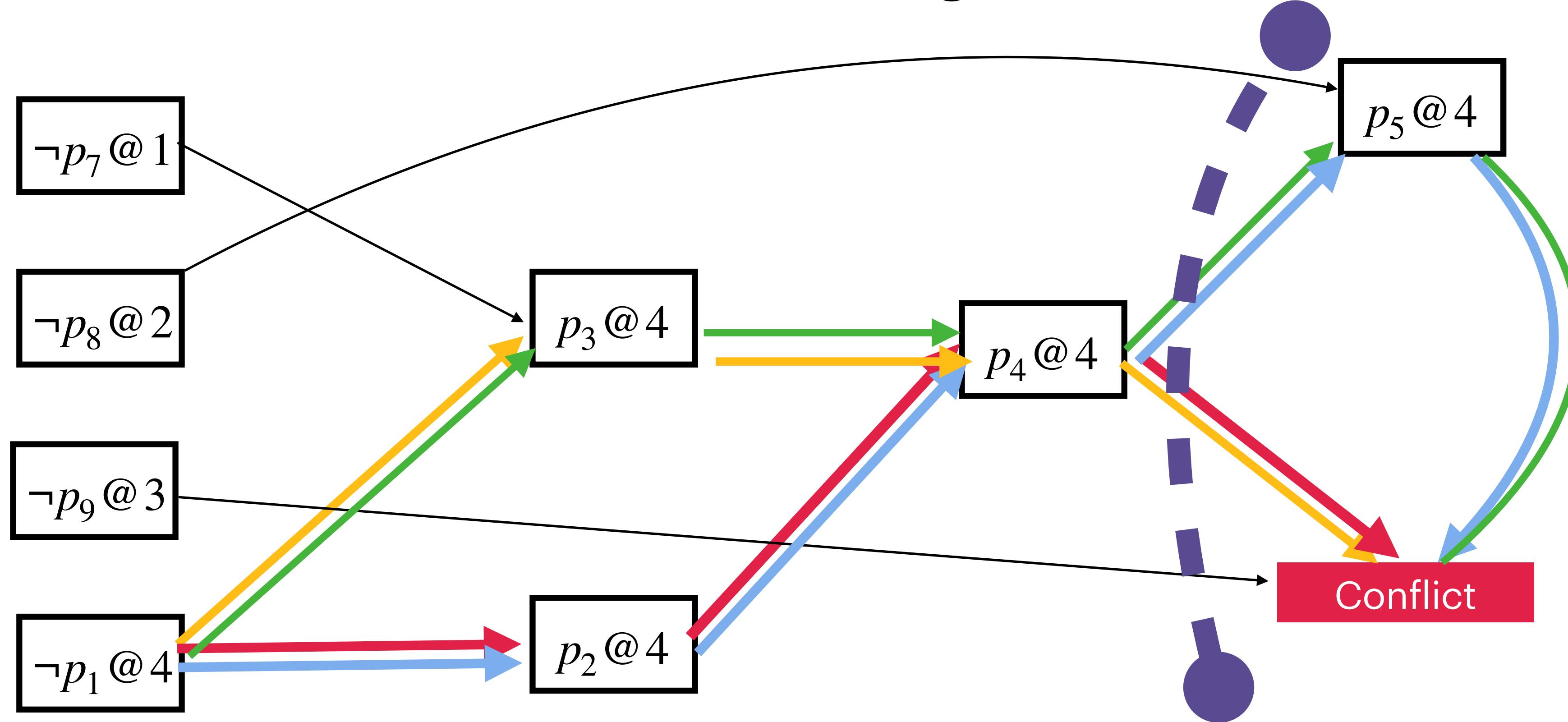
The literals on the A side of the cut, which have an edge directed from A to B, form a clause. These literals are then negated and combined into a disjunction.



UIP @4 = $\neg p_1 @ 4, p_4 @ 4$

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B, form a clause. These literals are then negated and combined into a disjunction.



$$\text{UIP } @ 4 = \neg p_1 @ 4, p_4 @ 4$$

$$\text{Learned Clause: } \neg(\neg p_8 \wedge p_4 \wedge \neg p_9)$$

Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

- # of variables occurrence in remaining unsatisfied clauses (different variants were studied in 90s).
- Dynamic heuristics:
 - Focus on variables which were useful recently in deriving learned clauses.
 - Can be interpreted as reinforcement learning.
 - VSIDS: Variable State Independent Decaying Sum.
- Look-ahead
 - Spent more time in selecting good variables.

VSIDS: Variable State Independent Decaying Sum

- Each literal l has a counter $S(l)$, initialized to zero.
- For every new clause $C = \{l_1, l_2, \dots, l_n\}$, $S(l_i)$ is incremented if $l_i \in C$.
- The unassigned variable and polarity with highest counter is chosen.
- Ties are broken randomly.
- Periodically (once in 256 conflict), all counters are halved.

VSIDS: Variable State Independent Decaying Sum

Literals	Score
a	4
$\neg a$	5
b	3
$\neg b$	3
c	2
$\neg c$	3
d	2
$\neg d$	4
e	2
$\neg e$	6
.....	

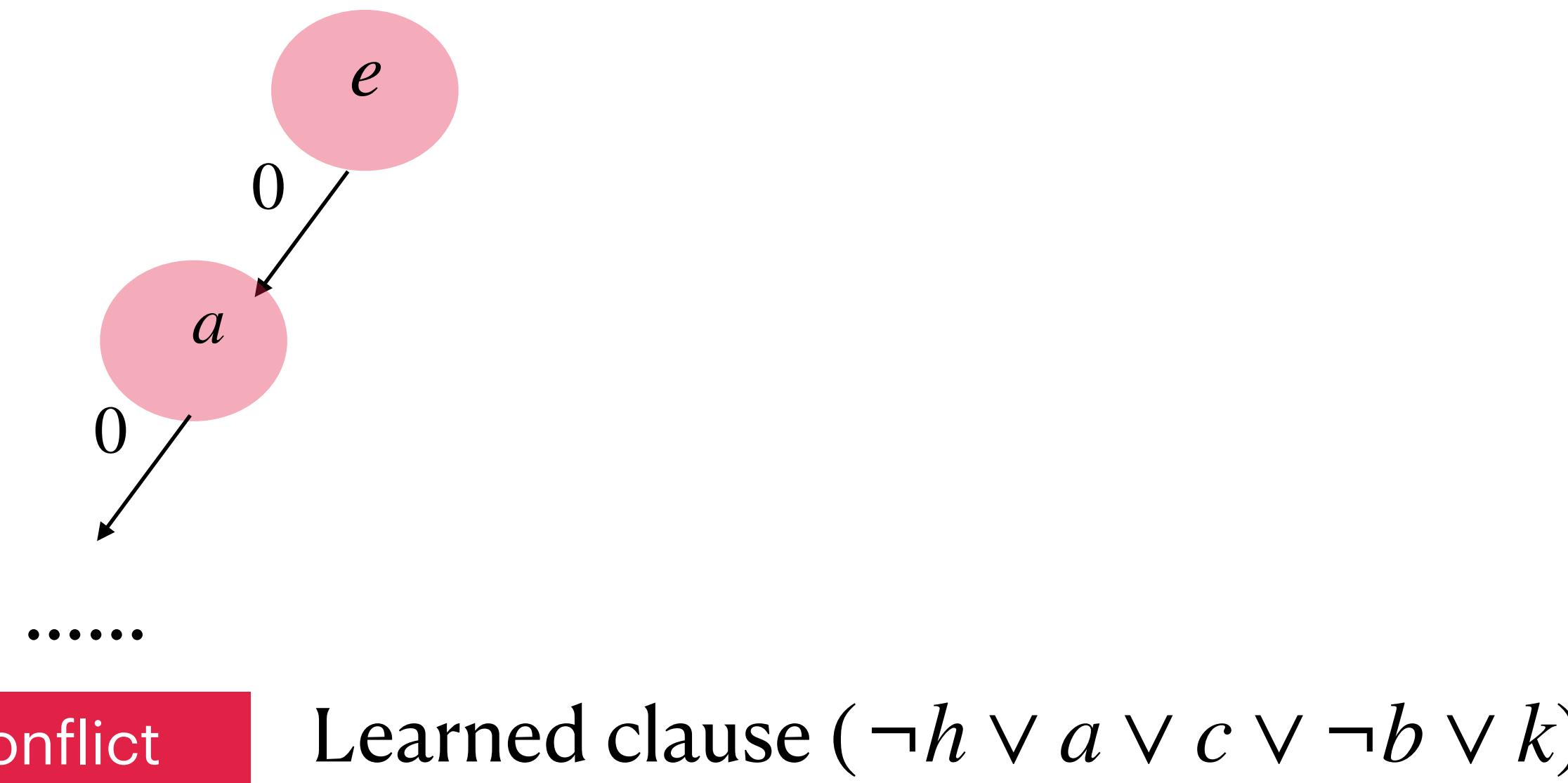
Initial value occurrences of “a” in formula F

Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Literals	Score
a	4
$\neg a$	5
b	3
$\neg b$	3
c	2
$\neg c$	3
d	2
$\neg d$	4
e	2
$\neg e$	6
.....	

Initial value occurrences of “a” in formula F

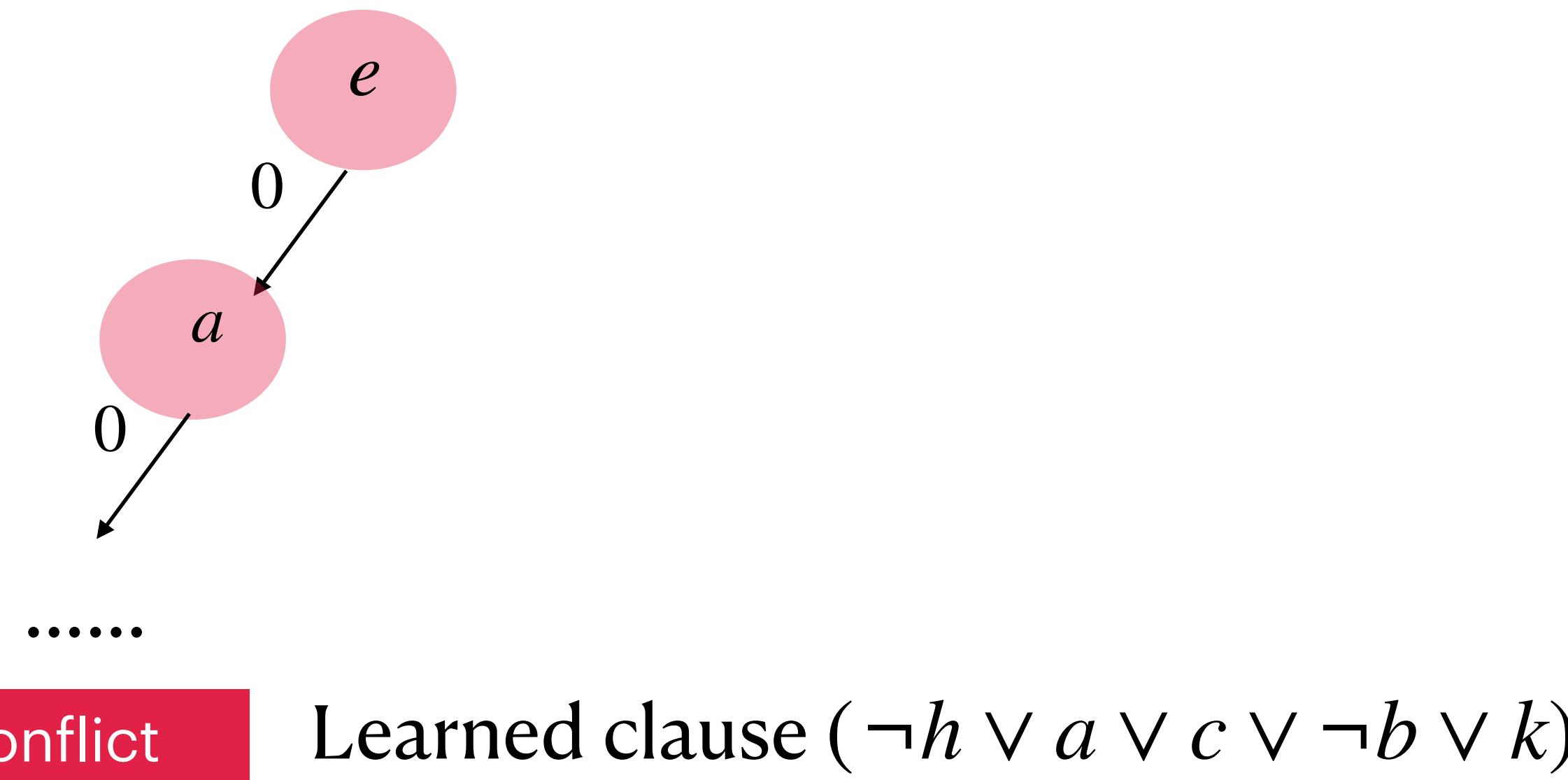


Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Literals	Score
a	4 +1
$\neg a$	5
b	3+1
$\neg b$	3
c	2+1
$\neg c$	3
d	2
$\neg d$	4
e	2
$\neg e$	6
.....	

Initial value occurrences of “a” in formula F

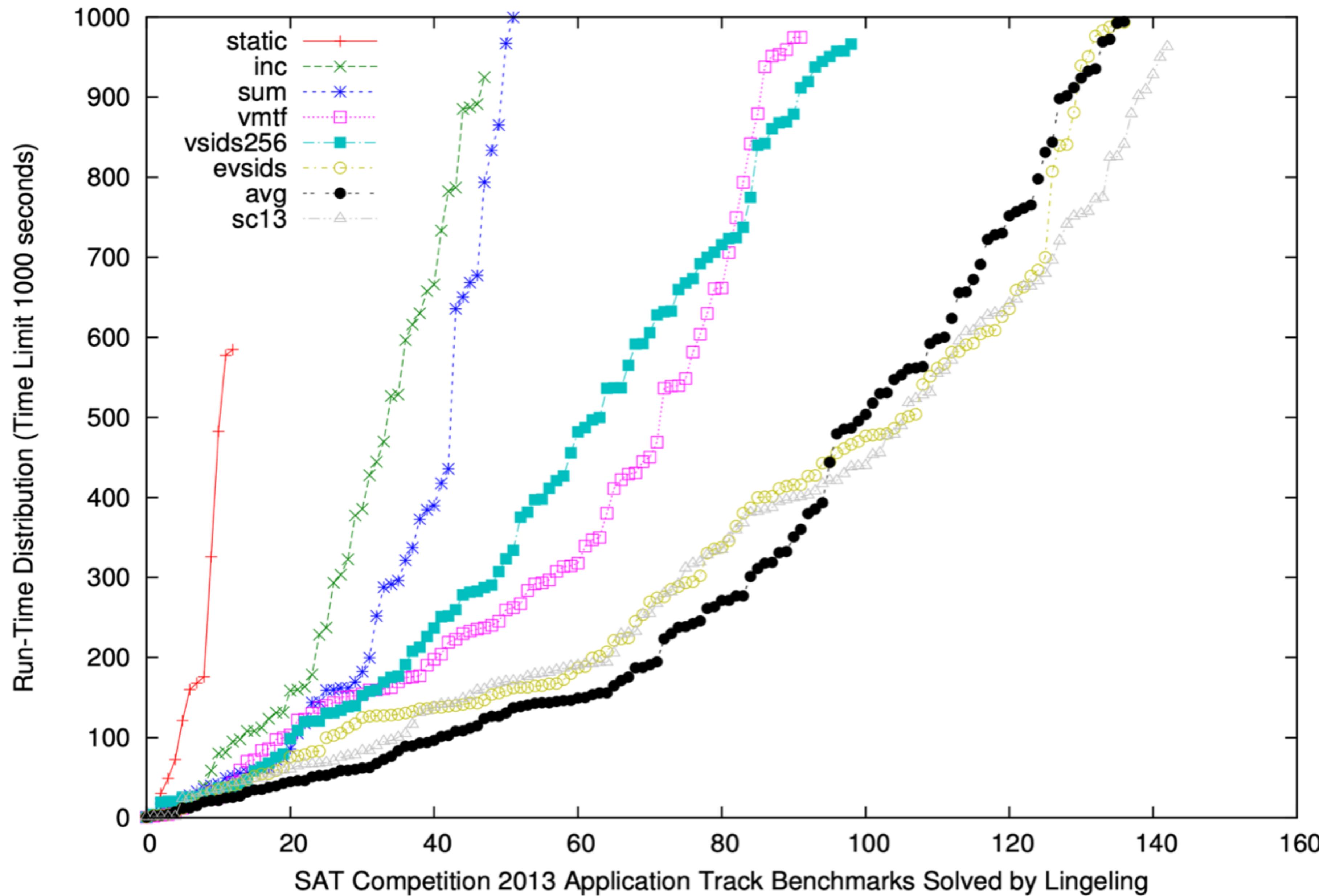


Count literal appearances in formula F

VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough?

- Pre-chaff static heuristics — go over all clauses that are not satisfied and compute some function $f(a)$ for each literal “a”.
- VSLDS
 - Extremely low overhead.
 - Dynamic & local (conflict driven).
 - Focuses the search to learn from the local context.



Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms (kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:

1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C , the fan should turn on.

Assume: m many person, n many lights.

Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms (kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:

1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

$$P = \{p_1, \dots, p_m\}, L = \{L_1, \dots, L_n\}$$

Assume: m many person, n many lights.

Let p_i represents that i^{th} person is in the room, and L_j represents that j^{th} light is on.

$$\neg(p_1 \vee p_2 \vee \dots \vee p_m) \rightarrow (\neg L_1 \wedge \neg L_2 \wedge \dots \wedge \neg L_n)$$

Clauses n many, each clause has
m+1 variables.

$$\equiv ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_1) \wedge ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_2) \wedge \dots \wedge ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_n)$$

$$P = \{p_1, \dots, p_m\}, L = \{L_1, \dots, L_n\}$$

Assume: m many person, n many lights.

Let p_i represents that i^{th} person is in the room, and L_j represents that j^{th} light is on.

$$\neg(p_1 \vee p_2 \vee \dots \vee p_m) \rightarrow (\neg L_1 \wedge \neg L_2 \wedge \dots \wedge \neg L_n)$$

Clauses n many, each clause has
m+1 variables.

$$\equiv ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_1) \wedge ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_2) \wedge \dots \wedge ((p_1 \vee p_2 \vee \dots \vee p_m) \vee \neg L_n)$$

Repetition: writing separate formulas for each room.

As the number of rooms increases, the formula grows linearly.

No generalization: We cannot express the general rule "For any room, if no one is present, the light should be off" without enumerating each case.

First Order Logic (FOL)

FOL is a logical system for reasoning about properties of objects.

Predicates – describes properties of objects.

Functions – maps objects to one another.

Quantifiers – to reason about multiple objects

First Order Logic (FOL): Objects

"John is happy" as P

"Mary is happy" as Q

Propositional variables don't provide any structure about what the proposition refers to or relationships between entities – how P and Q are related ?

Objects: It represent entities in a domain of discourse (things we want to reason about), such as people, numbers, or physical objects.

Objects are: John, and Marry.

Happy(John) – property "happy" is applied to John.

Happy(Mary) – property "happy" is applied to Mary.

Likes(Mary,John): "Mary likes John."

Objects allow FOL to express relationships, properties, and reasoning about entities.

First Order Logic (FOL): Predicates

$Likes(You, Yogurt) \wedge Likes(You, Mango) \rightarrow Likes(You, MangoLassi)$.

Objects: { You, Yogurt, Mango, MangoLassi}.

Predicates: $Likes(Obj_1, Obj_2) \mapsto \{0,1\}$

Predicates takes objects as an arguments and evaluate to True or False.

Predicates – describes properties of objects.

Happy(John)

Cute(John)

First Order Logic (FOL): Functions

$\text{FavoriteMovieOf}(\text{You}) \neq \text{FavoriteMovieOf}(\text{Date}) \wedge$

$\text{StarOf}(\text{FavoriteMovieOf}(\text{You})) = \text{StarOf}(\text{FavoriteMovieOf}(\text{Date}))$

Functions take objects as an argument and return objects associated with it.

$\text{Medianof}(x,y,z)$, $+(x,y)$, $\text{Wife}(\text{John})$.

As with predicates, functions can take in any number of arguments, but always return a single object.

	Operate On	And Produce
Connectives (\leftrightarrow , \rightarrow , \wedge , ...)	Propositions	A Proposition
Predicates	Objects	A Proposition
Functions	Objects	An Object

First Order Logic (FOL): Quantifiers

There is a number which is both prime and even.

Variables: x.

Predicates: Even(x), Prime(x)

$\exists x(Even(x) \wedge Prime(x))$

There is someone who is taller than I am and weighs more than I do.

Objects: me, Variable: x

Predicates: Taller(x,me), WeighsMore(x,me)

$\exists x Taller(x, me) \wedge WeighMore(x, me)$

Existential Quantifier (\exists): Expresses the existence of at least one element for which a statement is true.

First Order Logic (FOL): Quantifiers

For every number x , adding 0 to x results in x itself.

Variable: x

Function: $+(x, 0)$

Predicate: $= (x, + (x, 0))$

$\forall x = (x, + (x, 0))$

For all even numbers x , x is divisible by 2.

Variable: x

Function: $mod(x, 2)$

Predicate: $even(x), = (mod(x, 2), 0)$

$\forall x (even(x) \rightarrow = (mod(x, 2), 0))$

Universal Quantifier (\forall): Expresses generalization across all elements.

First Order Logic (FOL): Quantifiers

Scope of Quantifiers: refers to the part of the formula where the quantifier applies to the variable it introduces.

Bound Variable: A variable is bound if it lies within the scope of a quantifier.

Free Variable: A variable is free if it is not within the scope of any quantifier.

$\forall x P(x) \rightarrow Q(y)$. x is bounded and y is free

Nested Quantifiers: When quantifiers are nested, the scope of the inner quantifier is restricted by the outer quantifier.

$\forall x((\exists y P(x, y)) \rightarrow Q(x))$

Scope of $\forall x$ is entire formula.

Scope of $\exists y$ is limited to $P(x, y)$

First Order Logic (FOL): Quantifiers

When multiple quantifiers share overlapping scopes, their interactions can lead to significant differences in meaning.

$$\forall x \exists y P(x, y)$$

For every x , there exists a y such that $P(x, y)$.

Each person can know a different language, as long as they know at least one language.

$$\exists y \forall x P(x, y)$$

There exists a y , for all x such that $P(x, y)$.

There is a single language that everyone knows.

First Order Logic (FOL): Syntax

Well-Formed Formula (wff) of FOL are composed of six types of symbols (not including Parenthesis).

1. Constant symbols – representing objects.
2. Functions symbols – functions from pre-specified number of objects to an object.
3. Predicate symbols – more like specify properties to objects. Have specified arity.
Zero arity predicate symbols are treated as propositional symbols.
4. Variable symbols – will be used to quantify over objects.
5. Universal and existential quantifiers – will be used to indicate the type of quantification.
6. Logical connectives and negation.

First Order Logic (FOL): Syntax

Formula \rightarrow Atomic Formula

- | Formula
- | Connective Formula
- | Quantifier Variable Formula
- | \neg Formula
- | (Formula)

Connective \rightarrow \leftrightarrow | \wedge | \vee | \rightarrow

Quantifier \rightarrow \forall | \exists

Atomic Formula $\rightarrow P(T_1, \dots, T_n)$ where

$P \in Predicates$, T_i are Terms, n is arity.

Term \rightarrow c, where $c \in CONST$.

- | v, where $v \in VAR$
- | $F(T_1, \dots, T_n)$, where $F \in Functions$, T_i are Terms,
n is arity of F.

First Order Logic (FOL): Syntax

Is it a WFF?

TallerThan(John, Fatherof(John)) \wedge TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive.

Term $\rightarrow c$, where $c \in \text{CONST.}$

| v , where $v \in \text{VAR}$

| $F(T_1, \dots, T_n)$, where $F \in \text{Functions}$, T_i are Terms,
n is arity of F.