
Instructor: Priyanka Golia

COL:750/7250
Foundations of Automatic Verification

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html

DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

1. If F is True under m then Return SAT

2. If F is False under m then Return UNSAT

3. If there is a unit literal under m then Return

4. If there is a unit literal under m then Return

 Choose an unassigned variable , and random bit

5. If == SAT then Return SAT

Else Return

l DPLL(F, m[l ↦ 1])

¬l DPLL(F, m[l ↦ 0])

p b ∈ {0,1}

DPLL(F, m[p ↦ b])

DPLL(F, m[p ↦ 1 − b])

DPLL(F, m = ∅){

}

Unit Propagation

Backtracking at
conflict

CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.

2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

Taken from Mate Soos ’s slides.

Taken from Alex’s slides.

CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.

2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

Heuristics: which variables to pick, what value to assign?

Heuristics: how to learn a small conflict clause and unto which level to
backtrack?

Heuristics: how to learn a small conflict clause and upto
which level to backtrack?

AnalyzeConflict(m,F): some choices of clauses are found to be better than others.

Notations:

UIP (Unique Implication Point)

In an implication graph, node “ ” is a UIP at decision level d if “ ” occurs
in each path from decision literals to the conflict.

l@d l@d
dth

¬p6@1

¬p5@1 p1@3¬p7@2

p3@3 p2@3

p4@3

Conflict

C2 C2 C1

C4

C4

C3

Implication Graph.

C8

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

UIP @ level 1:

UIP @ level 2:

UIP @ level 3:

¬p6@1

¬p5@1 p1@3¬p7@2

p3@3 p2@3

p4@3

Conflict

C2 C2 C1

C4

C4

C3

Implication Graph.

C8

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

UIP @ level 1:

UIP @ level 2:

UIP @ level 3:

¬p6@1,¬p5@1

¬p6@1

¬p5@1 p1@3¬p7@2

p3@3 p2@3

p4@3

Conflict

C2 C2 C1

C4

C4

C3

Implication Graph.

C8

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

UIP @ level 1:

UIP @ level 2:

UIP @ level 3:

¬p6@1,¬p5@1

p1@3

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ???

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ???

UIP points: In an implication graph, node “ ” is a UIP
at decision level d if “ ” occurs in each path from
decision literals to the conflict.

l@d
l@d dth

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4
First UIP Point:

p4@4
Last UIP Point:

¬p1@4

UIP cuts to analyze conflicts:
If is UIP, then corresponding UIP cut is (A,B) of the implication graph.
Where,
B contains all the successors of from which there is a path to conflict.
A contains the rest.

l

l

UIP cuts to analyze conflicts: If is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of from which there is a path
to conflict, and A contains the rest.

l
l

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4 Is it a UIP cut?

UIP cuts to analyze conflicts: If is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of from which there is a path
to conflict, and A contains the rest.

l
l

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4 Is it a UIP cut? Yes, with respect to ¬p1@4

UIP cuts to analyze conflicts: If is UIP, then corresponding UIP cut is (A,B) of the
implication graph, where B contains all the successors of from which there is a path
to conflict, and A contains the rest.

l
l

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4 Is it a UIP cut? Yes, with respect to p4@4

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

Learned Clause: ¬(¬p7 ∧ ¬p8 ∧ ¬p9 ∧ ¬p1)

¬p8@2

¬p7@1

¬p9@3

¬p1@4

p3@4

p2@4

p4@4

p5@4

Conflict

UIP @4 = ¬p1@4,p4@4

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

Learned Clause: ¬(¬p8 ∧ p4 ∧ ¬p9)

Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

• # of variables occurrence in remaining unsatisfied clauses (different variants were
studied in 90s).

• Dynamic heuristics:

• Focus on variables which were useful recently in deriving learned clauses.

• Can be interpreted as reinforcement learning.

• VSIDS: Variable State Independent Decaying Sum.

• Look-ahead

• Spent more time in selecting good variables.

VSIDS: Variable State Independent Decaying Sum

• Each literal has a counter , initialized to zero.

• For every new clause , is incremented if .

• The unassigned variable and polarity with highest counter is chosen.

• Ties are broken randomly.

• Periodically (once in 256 conflict), all counters are halved.

l S(l)

C = {l1, l2, …, ln} S(li) li ∈ C

VSIDS: Variable State Independent Decaying Sum

Literals Score

4

5

3

3

2

3

2

4

2

6

Initial value occurrences of “a” in formula F

Count literal appearances in formula F

b

¬a

¬e

¬b

d
¬d

a

c

¬c

e

……

VSIDS: Variable State Independent Decaying Sum

Literals Score

4

5

3

3

2

3

2

4

2

6

Initial value occurrences of “a” in formula F

Count literal appearances in formula F

b

¬a

¬e

¬b

d
¬d

a

c

¬c

e

0

e

0
a

……
Conflict Learned clause (¬h ∨ a ∨ c ∨ ¬b ∨ k)

……

VSIDS: Variable State Independent Decaying Sum

Literals Score

4 +1

5

3+1

3

2+1

3

2

4

2

6

Initial value occurrences of “a” in formula F

Count literal appearances in formula F

b

¬a

¬e

¬b

d
¬d

a

c

¬c

e

0

e

0
a

……
Conflict Learned clause (¬h ∨ a ∨ c ∨ ¬b ∨ k)

……

VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough?

• Pre-chaff static heuristics — go over all clauses that are not satisfied and
compute some function for each literal “a”.

• VSLDS

• Extremely low overhead.

• Dynamic & local (conflict driven).

• Focuses the search to learn from the local context.

f(a)

Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:
1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

Assume: m many person, n many lights.

Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:
1. All lights should be off when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let represents that person is in the room, and represents that light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has
m+1 variables.

Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let represents that person is in the room, and represents that light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has
m+1 variables.

Repetition: writing separate formulas for each room.
As the number of rooms increases, the formula grows linearly.

No generalization: We cannot express the general rule "For any room, if no one is
present, the light should be off " without enumerating each case.

First Order Logic (FOL)

FOL is a logical system for reasoning about properties of objects.

Predicates — describes properties of objects.

Functions — maps objects to one another.

Quantifiers — to reason about multiple objects

First Order Logic (FOL): Objects

Objects are: John, and Marry.
Happy(John) — property “happy” is applied to John.
Happy(Mary) — property “happy” is applied to Mary.
Likes(Mary,John): "Mary likes John."

"John is happy" as P
“Mary is happy” as Q

Propositional variables don’t provide any structure about what the proposition refers to or
relationships between entities — how P and Q are related ?

Objects allow FOL to express relationships, properties, and reasoning about entities.

Objects: It represent entities in a domain of discourse (things we want to reason about),
such as people, numbers, or physical objects.

First Order Logic (FOL): Predicates

Likes(You, Yogurt) ∧ Likes(You, Mango) → Likes(You, MangoLassi) .
Objects: { You, Yogurt, Mango, MangoLassi}.

Predicates: Likes(Obj1, Obj2) ↦ {0,1}

Predicates takes objects as an arguments and evaluate to True or False.

Predicates — describes properties of objects.
Happy(John)
Cute(John)

First Order Logic (FOL): Functions

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date)∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions take objects as an argument and return objects associated with it.

Medianof(x,y,z), +(x,y), Wife(John).

As with predicates, functions can take in any number of arguments, but always return a
single object.

Operate On And Produce

Connectives Propositions A Proposition

Predicates Objects A Proposition

Functions Objects An Object

(↔ , → , ∧ , . .)

First Order Logic (FOL): Quantifiers

There is a number which is both prime and even.
Variables: x.
Predicates: Even(x), Prime(x)
∃x(Even(x) ∧ Prime(x))

There is someone who is taller than I am and weighs more than I do.

Objects: me, Variable: x
Predicates: Taller(x,me), WeighsMore(x,me)

 ∃xTaller(x, me) ∧ WeighMore(x, me)

Existential Quantifier (∃): Expresses the existence of at least one element for which a
statement is true.

For every number x, adding 0 to results in x itself.
Variable: x
Function:
Predicate:

+(x,0)
= (x, + (x,0))

∀x = (x, + (x,0))
For all even numbers x, x is divisible by 2.

Variable: x
Function:
Predicate:

mod(x,2)
even(x), = (mod(x,2),0)

∀x (even(x) → = (mod(x,2),0))

First Order Logic (FOL): Quantifiers

Universal Quantifier (∀): Expresses generalization across all elements.

First Order Logic (FOL): Quantifiers

Scope of Quantifiers: refers to the part of the formula where the quantifier applies to the
variable it introduces.

Bound Variable: A variable is bound if it lies within the scope of a quantifier.

Free Variable: A variable is free if it is not within the scope of any quantifier.
 . x is bounded and y is free∀x P(x) → Q(y)

Nested Quantifiers: When quantifiers are nested, the scope of the inner quantifier is
restricted by the outer quantifier.

∀x((∃yP(x, y)) → Q(x)) Scope of is entire formula.
Scope of is limited to

∀x
∃y P(x, y)

When multiple quantifiers share overlapping scopes, their interactions can lead to significant
differences in meaning.

First Order Logic (FOL): Quantifiers

∀x∃yP(x, y) ∃y∀xP(x, y)

For every x, there exists a y such that P(x, y). There exists a y, for all x such that P(x, y).

Each person can know a different language,
as long as they know at least one language.

There is a single language that everyone
knows.

First Order Logic (FOL): Syntax

Well-Formed Formula (wff) of FOL are composed of six types of symbols (not including
Parenthesis).

1. Constant symbols — representing objects.

2. Functions symbols — functions from pre-specified number of objects to an object.

3. Predicate symbols — more like specify properties to objects. Have specified arity.
 Zero arity predicate symbols are treated as propositional symbols.

4. Variable symbols — will be used to quantify over objects.

5. Universal and existential quantifiers — will be used to indicate the type of quantification.

6. Logical connectives and negation.

First Order Logic (FOL): Syntax

Formula -> Atomic Formula
 | Formula Connective Formula
 | Quantifier Variable Formula
 | Formula
 | (Formula)

¬

Atomic Formula -> where
 are Terms, n is arity.

P(T1, …, Tn)
P ∈ Predicates, Ti

Term -> c, where CONST.
 | v, where
 | , where Functions, are Terms,
n is arity of F.

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

Connective ->
Quantifier ->

↔ | ∧ | ∨ | →
∀ |∃

First Order Logic (FOL): Syntax

Is it a WFF?
TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive.

Term -> c, where CONST.
 | v, where
 | , where Functions, are Terms,
n is arity of F.

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

