
Instructor: Priyanka Golia 

COL:750/7250
Foundations of Automatic Verification 

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960) 

1. If F is True under m then Return SAT 

2. If F is False under m then Return UNSAT 

3. If there is a unit literal  under m then Return  

4. If there is a unit literal  under m then Return  

    Choose an unassigned variable , and random bit  

5.   If  == SAT then Return SAT 

Else Return 

l DPLL(F, m[l ↦ 1])

¬l DPLL(F, m[l ↦ 0])

p b ∈ {0,1}

DPLL(F, m[p ↦ b])

DPLL(F, m[p ↦ 1 − b])

DPLL(F, m = ∅){

}

Unit Propagation

Backtracking at 
conflict



CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.

2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value. 

3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a 
decision level upto which the solver needs to backtrack. 



Taken from Mate Soos ’s slides.



Taken from Alex’s slides.



CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.

2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value. 

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a 
decision level upto which the solver needs to backtrack. 

Heuristics: which variables to pick, what value to assign?

Heuristics:  how to learn a small conflict clause and unto which level to 
backtrack?



Heuristics:  how to learn a small conflict clause and upto 
which level to  backtrack?

AnalyzeConflict(m,F):  some choices of clauses are found to be better than others. 

Notations:

UIP (Unique Implication Point)

In an implication graph, node  “ ” is a UIP at decision level d if “ ” occurs  
in each path from  decision literals to the conflict.
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UIP points:   In an implication graph, node  “ ” is a UIP 
at decision level d if “ ” occurs  in each path from  
decision literals to the conflict.
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UIP points:   In an implication graph, node  “ ” is a UIP 
at decision level d if “ ” occurs  in each path from  
decision literals to the conflict.
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UIP points:   In an implication graph, node  “ ” is a UIP 
at decision level d if “ ” occurs  in each path from  
decision literals to the conflict.
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UIP points:   In an implication graph, node  “ ” is a UIP 
at decision level d if “ ” occurs  in each path from  
decision literals to the conflict.
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UIP cuts to analyze conflicts:  
If  is UIP, then corresponding UIP cut is (A,B) of the implication graph.  
Where,  
B contains all the successors of  from which there is a path to conflict.  
A contains the rest.

l

l



UIP cuts to analyze conflicts: If  is UIP, then corresponding UIP cut is (A,B) of the 
implication graph, where B contains all the successors of  from which there is a path 
to conflict, and A contains the rest.
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UIP cuts to analyze conflicts: If  is UIP, then corresponding UIP cut is (A,B) of the 
implication graph, where B contains all the successors of  from which there is a path 
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UIP cuts to analyze conflicts: If  is UIP, then corresponding UIP cut is (A,B) of the 
implication graph, where B contains all the successors of  from which there is a path 
to conflict, and A contains the rest.
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Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B, 
form a clause. These literals are then negated and combined into a disjunction.

Learned Clause: ¬(¬p7 ∧ ¬p8 ∧ ¬p9 ∧ ¬p1)
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UIP @4 = ¬p1@4,p4@4

Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B, 
form a clause. These literals are then negated and combined into a disjunction.

Learned Clause: ¬(¬p8 ∧ p4 ∧ ¬p9)



Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

• # of variables occurrence in remaining unsatisfied clauses (different variants were  
studied in 90s). 

• Dynamic heuristics: 

• Focus on variables which were useful recently in deriving learned clauses. 

• Can be interpreted as reinforcement learning.  

• VSIDS: Variable State Independent Decaying Sum.  

• Look-ahead 

• Spent more time in selecting good variables. 



VSIDS: Variable State Independent Decaying Sum

• Each literal   has a counter , initialized to zero. 

• For every new clause ,  is incremented if . 

• The unassigned variable and polarity with highest counter is chosen.  

• Ties are broken randomly. 

• Periodically (once in 256 conflict), all counters are halved. 

l S(l)

C = {l1, l2, …, ln} S(li) li ∈ C



VSIDS: Variable State Independent Decaying Sum
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VSIDS: Variable State Independent Decaying Sum
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VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough? 

• Pre-chaff static heuristics — go over all clauses that are not satisfied and  
compute some function  for each literal “a”. 

• VSLDS  

• Extremely low overhead. 

• Dynamic & local (conflict driven). 

• Focuses the search to learn from the local context. 

f(a)





Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms 
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as: 
1. All lights should be off when no one is in the room. 
2. If the temperature is above 30°C, the fan should turn on. 

Assume: m many person, n many lights. 



Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms 
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as: 
1. All lights should be off when no one is in the room. 
2. If the temperature is above 30°C, the fan should turn on. 

Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let  represents that  person is in the room, and  represents that  light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has 
m+1 variables.



Assume: m many person, n many lights. , P = {p1, …, pm} L = {L1, …, Ln}

Let  represents that  person is in the room, and  represents that  light is on. pi ith Lj jth

¬(p1 ∨ p2 ∨ … ∨ pm) → (¬L1 ∧ ¬L2 ∧ … ∧ ¬Ln)

≡ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L1) ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬L2) ∧ … ∧ ((p1 ∨ p2 ∨ … ∨ pm) ∨ ¬Ln)

Clauses n many, each clause has 
m+1 variables.

Repetition:  writing separate formulas for each room.  
As the number of rooms increases, the formula grows linearly. 

No generalization: We cannot express the general rule "For any room, if no one is 
present, the light should be off " without enumerating each case. 



First Order Logic (FOL)

FOL is a logical system for reasoning about properties of objects.  

Predicates — describes properties of objects.

Functions — maps objects to one another.

Quantifiers — to reason about multiple objects



First Order Logic (FOL): Objects

Objects are: John, and Marry. 
Happy(John) — property “happy” is applied to John. 
Happy(Mary)  — property “happy” is applied to Mary. 
Likes(Mary,John): "Mary likes John."

"John is happy" as P 
“Mary is happy” as Q  
 
Propositional variables don’t provide any structure about what the proposition refers to or 
relationships between entities — how P and Q are related ?

Objects allow FOL to express relationships, properties, and reasoning about entities.

Objects: It represent entities in a domain of discourse (things we want to reason about),  
such as people, numbers, or physical objects. 



First Order Logic (FOL): Predicates

Likes(You, Yogurt) ∧ Likes(You, Mango) → Likes(You, MangoLassi) .
Objects: { You, Yogurt, Mango, MangoLassi}. 

Predicates: Likes(Obj1, Obj2) ↦ {0,1}

Predicates takes objects as an arguments and evaluate to True or False. 

Predicates — describes properties of objects. 
Happy(John) 
Cute(John) 



First Order Logic (FOL): Functions

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date)∧  
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions take objects as an argument and return objects associated with it.

Medianof(x,y,z), +(x,y), Wife(John).

As with predicates, functions can take in any number of arguments, but always return a 
single object. 



Operate On And Produce

Connectives  Propositions A Proposition

Predicates Objects A Proposition

Functions Objects An Object

( ↔ , → , ∧ , . . )



First Order Logic (FOL): Quantifiers

There is a number which is both prime and even.
Variables: x. 
Predicates:  Even(x), Prime(x) 
∃x(Even(x) ∧ Prime(x))

There is someone who is taller than I am and weighs more than I do.

Objects: me, Variable: x 
Predicates: Taller(x,me), WeighsMore(x,me) 

 ∃xTaller(x, me) ∧ WeighMore(x, me)

Existential Quantifier (∃): Expresses the existence of at least one element for which a 
statement is true. 



For every number x, adding 0 to  results in x itself.
Variable: x 
Function:  
Predicate:  

+(x,0)
= (x, + (x,0))

∀x = (x, + (x,0))
For all even numbers x, x is divisible by 2.

Variable: x 
Function:  
Predicate:  

mod(x,2)
even(x), = (mod(x,2),0)

∀x (even(x) → = (mod(x,2),0))

First Order Logic (FOL): Quantifiers

Universal Quantifier (∀): Expresses generalization across all elements.



First Order Logic (FOL): Quantifiers

Scope of Quantifiers: refers to the part of the formula where the quantifier applies to the 
variable it introduces. 

Bound Variable: A variable is bound if it lies within the scope of a quantifier. 

 
Free Variable: A variable is free if it is not within the scope of any quantifier. 
                                                 .  x is bounded and y is free∀x P(x) → Q(y)

Nested Quantifiers: When quantifiers are nested, the scope of the inner quantifier is 
restricted by the outer quantifier. 

∀x((∃yP(x, y)) → Q(x)) Scope of  is entire formula.  
Scope of  is limited to 

∀x
∃y P(x, y)



When multiple quantifiers share overlapping scopes, their interactions can lead to significant 
differences in meaning. 

First Order Logic (FOL): Quantifiers

∀x∃yP(x, y) ∃y∀xP(x, y)

For every x, there exists a y such that P(x, y). There exists a y, for all x such that P(x, y).

Each person can know a different language,  
as long as they know at least one language.

There is a single language that everyone 
knows.



First Order Logic (FOL): Syntax

Well-Formed Formula (wff ) of FOL are composed of six types of symbols (not including  
Parenthesis). 
 
1. Constant symbols — representing objects. 

2. Functions symbols — functions from pre-specified number of objects to an object. 

3. Predicate symbols — more like specify properties to objects. Have specified arity.   
                                           Zero arity predicate symbols are treated as propositional symbols.  

4. Variable symbols — will be used to quantify over objects.  

5. Universal and existential quantifiers — will be used to indicate the type of quantification. 

6. Logical connectives and negation. 



First Order Logic (FOL): Syntax

Formula  -> Atomic Formula 
                   |   Formula Connective Formula 
                   |  Quantifier Variable Formula 
                   |   Formula 
                   |  (Formula)

¬

Atomic Formula ->  where 
 are Terms, n is arity. 

            

P(T1, …, Tn)
P ∈ Predicates, Ti

Term   -> c, where  CONST.  
              |  v, where  
              | , where  Functions,  are Terms,       
n is arity of F.            

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti

Connective ->  
Quantifier -> 

↔ | ∧ | ∨ | →
∀ |∃



First Order Logic (FOL): Syntax

Is it a WFF?  
TallerThan(John, Fatherof(John)) ∧ TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive. 

Term   -> c, where  CONST.  
              |  v, where  
              | , where  Functions,  are Terms,       
n is arity of F.            

c ∈
v ∈ VAR

F(T1, …, Tn) F ∈ Ti


