COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

ey

https:/priyanka-golia.github.io/teaching/COL-750-COL7250/index.html

Course Webpage



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

DPLL(F,m = @){
1. If Fis True under m then Return SAT Backtracking at
conflict

». If Fis False under m then Return UNSAT «~ Unit Propagation

3. If thereis a unit literal / under m then Return DPLL(F, m|[ — 1]) ,{/
4. If there is a unit literal =/ under m then Return DPLL(F, m|[ — 0])

Choose an unassigned variable p, and random bit b € {0,1}
5. W DPLL(F,m|[p — b])==SAT then Return SAT
Else Return DPLL(F, m[p — 1 — b])



CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.

2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.

3. AnalyzeConflict(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.



¢ NOooL
| BOD- L0 N
Rbc._c 000000
ﬂﬁ%..c._.u..dd P |
D:?..... D., "y ) ) ) ’ JR
/Ju T

g0

g0 000

/

mbw c._.-c..z‘.ca.c..:..cls\u
4 ....IL. I I I —LU
ﬁ, 0 0000

R
-

Vo oaainia o g i
Q\ﬁu?oala 03
ﬂ,, g A D

Taken from Mate Soos ’s slides.



SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)

2002 2003 2004 2005 2006

eGTl

2007 2008

MiniSat

2009 2010 2011

Glucos

Moskewic Goldberg Moskewic Eén Pipatsris  Eén Bier Audemar
z Novikov  z Eén Sérensso awat Sérensso e
Madigan Madigan  SOrensso p Darwich  n S Slmon
Zhao Zhao n e
Zhang Zhang
Malik Malik
2012 2013 2014 2019 2016 2017 2018 2019 2020 2021
COMS LCMDis | LCMDist LCMDist
Audemar Bier Bier ChronoB o 62l DBiere Cherif
d 8, C n Liang Xiao TDLV3 Fazekas Habet
Simon Oh Luo Nadel F/eury Terrioux
Ganesh Li Ryvchi Kochemazo Hejsinger
Czarnec Manya n Vv
ki Lu Zaikin
2022 2023 Poupart Kondratiev
Semenov
Zheng Haberlandt
He Green
Chen

Taken from Alex’s slides.

MiniSat-base
d:

Armin Biere’s&
derived:

Others:



CDCL: Conflict Driven Clause Learning

1. UnitPropagation(m, F): applies unit propagation and extends m.
2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.
Heuristics: which variables to pick, what value to assign?

3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a
decision level upto which the solver needs to backtrack.

Heuristics: how to learn a small conflict clause and unto which level to
backtrack?



Heuristics: how to learn a small conflict clause and upto
which level to backtrack?

AnalyzeConflict(m,F): some choices of clauses are found to be better than others.

Notations:

UIP (Unique Implication Point)

In an implication graph, node “/@d” is a UIP at decision level d if “/@d” occurs
in each path from d” decision literals to the conflict.



UIP points: In an implication graph, node “I@d” is a UIP

at decision level d if “/ @ d” occurs in each path from d” C
L. . 3
decision literals to the contlict.
C, 5 |Gy
UIP @ level 1
C3
C
UIP @ level 2: i

UIP @ level 3: Conflict

Implication Graph.



UIP points: In an implication graph, node “/@d” is a UIP P @1

at decision level d if “/@d” occurs in each path from d”

decision literals to the conflict.

G, 5 |G

UIP @ level1: —-p. @1,-p. @1 p;@3 H
C3

, @
Cy
UIP @ level 2: m
/c4

UIP @ level 3:

Implication Graph.

D@
i

|
3k




UIP points: In an implication graph, node “I@d” is a UIP

at decision level d if “/@d” occurs in each path from d"
decision literals to the contlict.

UIP @ level1: -p.@1,-p. @1

UIP @ level 2:

UIP @ level 3: p, @3

Implication Graph.



UIP points: In an implication graph, node “I@d” is a UIP

at decision level d if “/@d” occurs in each path from d"
decision literals to the contlict.

-/ - Conflict
| @4
EXTi

UIP @4 = 777



UIP points: In an implication graph, node “I@d” is a UIP

at decision level d if “/@d” occurs in each path from d"
decision literals to the contlict.

Conflict




UIP points: In an implication graph, node “I@d” is a UIP

at decision level d if “/@d” occurs in each path from d"
decision literals to the contlict.

T
—W/

Conflict

First UIP Point: Last UIP Point:

UIP @4 = —p, @4,p, @4 P @4 p, @4



UIP cuts to analyze conflicts:
If [is UIP, then corresponding UIP cut is (A,B) of the implication graph.
Where,

B contains all the successors of [ from which there is a path to conflict.
A contains the rest.



UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the

implication graph, where B contains all the successors of / from which there is a path
to conflict, and A contains the rest.

Conflict

UIP @4 = ~p, @4,p, @4 [s it a UIP cut?



UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the

implication graph, where B contains all the successors of / from which there is a path
to conflict, and A contains the rest.

Conflict

UIP @4 = -p,@4,p, @4 Isita UIP cut? Yes, with respect to —p; @4



UIP cuts to analyze conflicts: If [ is UIP, then corresponding UIP cut is (A,B) of the

implication graph, where B contains all the successors of / from which there is a path
to conflict, and A contains the rest.

Conflict

UIP @4 = -p, @4,p, @4 [sita UIP cut?  Yes, with respect to p, @4



Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

Conflict

Learned Clause: =(—p; A pg A 7 1pg A T1py)
UIP @4 = -p, @4,p, @4



Learned Conflict Clause from UIP cut

The literals on the A side of the cut, which have an edge directed from A to B,
form a clause. These literals are then negated and combined into a disjunction.

Conflict

UIP @4 = —p,@4,p,@4  Learned Clause: =(—pg A ps A po)



Heuristics: which variables to pick, what value to assign?

Variable ordering, Decision heuristics, Branching heuristics.

 # of variables occurrence in remaining unsatisfied clauses (different variants were
studied in 9os).

* Dynamic heuristics:

* Focus on variables which were useful recently in deriving learned clauses.

* Can be interpreted as reinforcement learning.

» VSIDS: Variable State Independent Decaying Sum.

* Look-ahead

* Spent more time in selecting good variables.



VSIDS: Variable State Independent Decaying Sum

Each literal /[ has a counter S(/), initialized to zero.

For every new clause C = {[, 5, ..., [ }, (L) is incremented if /. € C.
The unassigned variable and polarity with highest counter is chosen.
Ties are broken randomly.

Periodically (once in 256 conflict), all counters are halved.



VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 [nitial value occurrences of “a” in formula F
—q | 5
2 3
b 3
C 2
—C 3
J 2
—d 4
e 2
—e | 6 Count literal appearances in formula F




VSIDS: Variable State Independent Decaying Sum

Literals| Score
a 4 [nitial value occurrences of “a” in formula F
-1 5 o
b 3 (,)/
—b 3 7
C 2 ?/
d 2 Learned clause (©hVaVcV bV k)
—d 4
e 2
—e | 6 Count literal appearances in formula F




VSIDS: Variable State Independent Decaying Sum

Literals| Score

a 4 +1
-1 5

b 3+1
—b 3

C 2+
mlé 3
d 2
-1 4
€ 2
—e 6

Initial value occurrences of “a” in formula F

Learned clause (mhAV aV cV —bVk)

Count literal appearances in formula F



VSIDS: Variable State Independent Decaying Sum

Why it was a breakthrough?

* Pre-chaff static heuristics — go over all clauses that are not satisfied and
compute some function f(a) for each literal “a”.

e VSLDS
* Extremely low overhead.
* Dynamic & local (conflict driven).

 Focuses the search to learn from the local context.



Run-Time Distribution (Time Limit 1000 seconds)

1000

900

800

700

600

500

400

300

200

100

—

static
INC

SUM -~~~ - -

vsids256
evsids

avg - e -

sci13

| | | ] |

20 40 60 80 100 120 140

SAT Competition 2013 Application Track Benchmarks Solved by Lingeling

160



Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:
1. All lights should be off when no one is in the room.

2. If the temperature is above 30°C, the fan should turn on.

Assume: m many person, n many lights.



Imagine a smart home with multiple devices (lights, fans, thermostats) spread across different rooms
(kitchen, bedroom, living room). A control system needs to ensure certain rules are satisfied, such as:

1. All lights should be oft when no one is in the room.
2. If the temperature is above 30°C, the fan should turn on.

P={p,...,p,},L={L,,...,L} Assume: m many person, n many lights.

Let p; represents that i " herson is in the room, and L; represents that "™ light is on.

Clauses n many, each clause has
“(pyVPV...Vp) = (L AL, A AL m+1 variables.

= (P VPV ... VP )V L) APV PLV ... VP )V L) A APV PV .oV ) VL)



P={py....p,},L=1Ly, ...,L,} Assume: m many person, n many lights.

Let p; represents that i person is in the room, and L; represents that " light is on.

Clauses n many, each clause has
“(pyVpyV...Vp )= (LA L, A... A\TL) 141 variables.

= VPV ... VDIV ALDAW(pr VPV ... VPOV L)AL AW(prVPY ...V P,V L)

Repetition: writing separate formulas for each room.
As the number of rooms increases, the formula grows linearly.

No generalization: We cannot express the general rule "For any room, if no one is
present, the light should be off " without enumerating each case.



First Order Logic (FOL)

FOL is a logical system for reasoning about properties of objects.

Predicates — describes properties of objects.
Functions — maps objects to one another.

Quantifiers — to reason about multiple objects



First Order Logic (FOL): Objects

"John is happy" as P
“Mary is happy” as Q

Propositional variables don’t provide any structure about what the proposition refers to or
relationships between entities — how P and Q are related ?

Objects: It represent entities in a domain of discourse (things we want to reason about),
such as people, numbers, or physical objects.

Objects are: John, and Marry.

Happy(John) — property “happy” is applied to John.

Happy(Mary) — property “happy” is applied to Mary.
Likes(Mary,John): "Mary likes John."

Objects allow FOL to express relationships, properties, and reasoning about entities.



First Order Logic (FOL): Predicates

Likes(You, Yogurt) A Likes(You, Mango) — Likes(You, MangoLassi) .
Objects: { You, Yogurt, Mango, MangolLassi}.

Predicates: Likes(Obj,, Obj,) — {0,1}

Predicates takes objects as an arguments and evaluate to True or False.

Predicates — describes properties of objects.
Happy(John)
Cute(John)




First Order Logic (FOL): Functions

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions take objects as an argument and return objects associated with it.

Medianof(x,y,z), +(x,y), Wife(John).

As with predicates, functions can take in any number of arguments, but always return a
single object.



Operate On

And Produce

Connectives
( (_) Y, _> % /\ 9 ¢ ° )

Propositions

A Proposition

Predicates

Objects

A Proposition

Functions

Objects

An Object




First Order Logic (FOL): Quantifiers

There is a number which is both prime and even.
Variables: x.

Predicates: Even(x), Prime(x)
dx(Even(x) A Prime(x))

There is someone who is taller than I am and weighs more than | do.

Objects: me, Variable: x
Predicates: Taller(x,me), WeighsMore(x,me)

dxTaller(x, me) A WeighMore(x, me)

Existential Quantifier (3): Expresses the existence of at least one element for which a
statement Is true.



First Order Logic (FOL): Quantifiers

For every number x, adding o to results in x itself.
Variable: x

Function: +(x,0)
Predicate: = (x, + (x,0))
Vx = (x, + (x,0))

For all even numbers x, x is divisible by 2.
Variable: x

Function: mod(x,2)
Predicate: even(x), = (mod(x,2),0)
Vx (even(x) - = (mod(x,2),0))

Universal Quantifier (V): Expresses generalization across all elements.



First Order Logic (FOL): Quantifiers

Scope of Quantifiers: refers to the part of the formula where the quantifier applies to the
variable it introduces.

Bound Variable: A variable is bound if it lies within the scope of a quantifier.

Free Variable: A variable is free if it is not within the scope of any quantifier.
Vx P(x) — O(y). xis bounded and y is free

Nested Quantifiers: When quantifiers are nested, the scope of the inner quantifier is
restricted by the outer quantifier.

Scope of Vx is entire formula.

Vx((dyP(x,y)) = QX))
Scope of dyis limited to P(x, y)



First Order Logic (FOL): Quantifiers

When multiple quantifiers share overlapping scopes, their interactions can lead to significant
differences in meaning.

VxdyP(x,y) dyVxP(x, y)
For every x, there exists a y such that P(x, y). There exists a y, for all x such that P(x, y).
Each person can know a different language, There is a single language that everyone

as long as they know at least one language. knows.



First Order Logic (FOL): Syntax

Well-Formed Formula (wff) of FOL are composed of six types of symbols (not including
Parenthesis).

1. Constant symbols — representing objects.
2. Functions symbols — functions from pre-specified number of objects to an object.

3. Predicate symbols — more like specify properties to objects. Have specified arity.
Zero arity predicate symbols are treated as propositional symbols.

4. Variable symbols — will be used to quantify over objects.
5. Universal and existential quantifiers — will be used to indicate the type of quantification.

6. Logical connectives and negation.



First Order Logic (FOL): Syntax

Formula -> Atomic Formula
Formula Connective Formula
Quantifier Variable Formula Quantifier -> V| 3

- Formula
(Formula)

Connective > < |A |V | =

Atomic Formula -> P(T,, ..., T,) where
P € Predicates, T. are Terms, n is arity.

Term ->c, wherec € CONST.
' v, wherev € VAR

| F(Ty, ..., T,), where ' € Functions, T; are Terms,
n is arity of F.



First Order Logic (FOL): Syntax

Is it a WFF?
TallerThan(John, Fatherof(John)) A TallerThan(Fatherof(Fatherof(John)), John) .

Yes, notice, Term is recursive.

Term ->c, where c € CONST.
v, where v € VAR

F(T,,...,T,)),where I’ € Functions, T, are Terms,
n is arity of F.




