COL:750/7250

Foundations of Automatic Verification

Instructor: Priyanka Golia

ey

https:/priyanka-golia.github.io/teaching/COL-750-COL7250/index.html

Course Webpage

If formula is SATisfiable, gives an satisfying

/ assignment

Boolean ——> SAT Solvers
/propositional
formulas

UNSAT

Resolution Refutation

List of clauses C;, C,, ..., C, is a resolution refutation of formula F - if:
1. C,isempty[]

2. Ck € Feyp or G is derived using resolution from C; and C;, where 1,j < k

Models(F) = &

F is UNSAT C,;=pVa
G=PVP C,is derived from C,, C,
Then, /

Ck=0£Vﬁ

Resolution Refutation

F=(pVogVvrA(mpVaq) Ap)A(or)
, c, oG

Resolution on C,, C; (7p VgV r)A(p)
Cs:(mgVr)

List of clauses Cy, C, ..., Cg is a resolution
Resolution on C,, C; (7pV q) A(p) .
Co: () refutation of F

Resolution on Cs, C, (7gVr)A(or)
C;:(g)

Resolutionon C,, C; (g) A (~q)

Cs:

SAT Solving using Resolution

1. Start with Foyr
2. Perform Resolution until
1. Empty clause is derived —> return UNSAT

2. No further resolution is possible —-> return SAT

One of these two cases will occur — resolution is sound and complete.

Resolution Refutation

Thm: A formula F -y is refutable if and only if F-yis unsatisfiable

— direction is easy to see: if F-y is refutable then F -, is unsatishable.

HW:

« direction: if -y is unsatisfiable then F -y is refutable

Hint: Induction on # of propositional variables.

Bottleneck of Resolution Refutation

Space required to preform Resolutions:

m

2
where m is number of clauses.

1. At every resolutions step: () new clauses are added to the formula,

2. This is done linear many times (O(Vars(F')) many),
hence over growth can be exponential.

3. Resolution is EXPSPACE.

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp
2. Pick a literal [that occurs with both polarities in F-y .

3. For every clause C in F - containing [and every clause C'in F -y containing

its negation —/ perform resolution
Lr=(C\{I)U(C\{~1})
2. Fenp < add_to_formula(r, F onr)
4. For every clause C that contains [or =/ do

1. Fonp < remove_ from_ formula(C, Fyr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp

2. Pick a literal / that occurs with both polarities in F -y F i < Resolution(C, 1, F o)

3. For every clause C in F -y containing [and every clause C'in F -y containing
its negation —/ perform resolution

L. r=(C\{I})u(C\{~})
2. Feyp < add_to_ formula(r, Fonp)
4. For every clause C that contains [or =/ do

1. Fenp < remove_ from_ formula(C, Foyr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Fyp

2. Pick a literal / that occurs with both polarities in F-y in different clauses :
1. Feoyp < Resolution(C, L, Frnr)

4. For every clause C that contains [or =/ do

1. Feyp < remove_ from_ formula(C, F)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Fpnp

2. It F-phas empty clause then

1. Return UNSAT
Is this correct?

3. If Althat occurs with both polarities in different clauses in F-yx

1. Return SAT

How about (p V —1p)

3. Pick a literal / that occurs with both polarities in /-y in different clauses
1. Feyp < Resolution(C, L, Foyp)
4. For every clause C that contains [or =/ do:

1. Fonp < remove_ from_ formula(C, Fynr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp
2. For every clause C in F - that contains both [and =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)
3. If Feoyp is empty

1. Return SAT

4. If F-yrhas empty clause then

1. Return UNSAT

5. If Al that occurs with both polarities in different clauses in F -

1. Return SAT

0. Pick a literal [that occurs with both polarities in F-y in different clauses:
1. Foyp < Resolution(C, [, Foyr)

7. For every clause C that contains [or =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp
2. For every clause C in F - that contains both [and =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)
3. If Feoyp is empty

1. Return SAT

4. If F-yrhas empty clause then

1. Return UNSAT

[f A/ that occurs with both polarities in different clauses in F-yx

Can we do better?
1. Return SAT

0. Pick aliteral / that occurs with both polarities in F-y .
1. Foyp < Resolution(C, [, Foyr)
7. For every clause C that contains [or =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)

Pure Literal Elimination

Pure literal: a literal [all of which occurrences in F have the same polarity.

Example: (pvgVvrA(—ngVr)A(pV-r)A(pVgq)

(E\/q\/r)/\(—lqu)/\@v—lr)/\(mx/—lq)

Literal p has positive polarity in all occurrence in F. P is pure literal.

(pVgVI)A(gVTr)A(apV-r)A(pV qg) — gqis pure literal

Pure Literal Elimination

Pure literal: a literal [all of which occurrences in F have the same polarity.

For every clause that contains a pure literal:

F g < remove_ from_ formula(C, F -yr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp

2. For every clause C in F -y that either contains both / and =/ or has pure literal do:
1. Fonp < remove_ from_ formula(C, Fyr)

3. If Feoyp is empty
1. Return SAT

4. If F-yrhas empty clause then

1. Return UNSAT

5. If Al that occurs with both polarities in different clauses in F -

1. Return SAT

0. Pick aliteral / that occurs with both polarities in F-y .
1. Foyp < Resolution(C, [, Foyr)

7. For every clause C that contains [or =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Foyp

2. For every clause C in F - that either contains both [and =/ or has pure literal do:
1. Fonp < remove_ from_ formula(C, Fqyr)

3. If Feyp is empty
1. Return SAT

4. If Fyrhas empty clause then

1. Return UNSAT

5. Pick a literal [that occurs with both polarities in F-y .
1. Fonp < Resolution(C, [, Fryr)

6. For every clause C that contains /or =/ do:

1. Fonp < remove_ from_ formula(C, Fyr)

DP algorithm

F=(pVvgANpVqgA(pVr)A(-pVr)

\\[| * No pure literal, no clause with [v =/
Pick literal p

(gVvr) AN(@V—r) A(mgVr) A (DgV)

*No pure literal, no clause with [VvV =/
\ Pick literal g

(r) AN (rv-r) A (nrvr) A (r) *remove clauses with [/ Vv —/

(r) A (—r) Pick literal r

F has empty clause — UNSAT

[]

DP algorithm

F=(pVvgANpVqgA(pVr)A(-pVr)

\\[| * No pure literal, no clause with [v =/
Pick literal p

(gVvr) AN(@V—r) A(mgVr) A (DgV)

*No pure literal, no clause with [VvV =/
\ Pick literal g

(r) AN (rv-r) A (nrvr) A (r) *remove clauses with [/ Vv —/

(r) A (—r) Pick literal r

F has empty clause — UNSAT

[]

DP algorithm

F=(pVvgVvr)AN@V-rV-as)A(mgVs)A(pVs)

F=(pVAPV2g9 A(pVIr)A(pVr) A-p

p hasto take value O, (mp vV r) A (mp V —r) are True

Can we remove all clauses that have —p?

(7P) APV q) Zar ¢
(7p) APV 7q) Egar G

Unit Propagation

While F contains a unit clause (/) do:

For every clause C in F that has / do:

Fnp < remove_ from_ formula(C, F ~yr)

For every clause C in F that has =/ do:

Fnp < remove_ from_ formula(C, F ~yr)
Fonp < add_to_ formula(C\ ~L, Foyp)

DP algorithm for SAT Solving (Martin Davis - Hilary Putham 1960)

1. Start with Fyr

2. For every clause C in F - that either contains both [and =/ or has pure literal do:
1. Foyp < remove_ from_ formula(C, Fyr)

3. Feyp < UnitPropagation(fqyr)

4. It Foyp is empty
1. Return SAT

5. If F-yrhas empty clause then

1. Return UNSAT

6. Pick a literal [that occurs with both polarities in Fopp .
1. Fonp < Resolution(C, [, Fryr)

7. For every clause C that contains [or =/ do:

1. Feyp < remove_ from_ formula(C, Foyp)

DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

Complete and Sound algorithm & takes linear space in worst case.

Still the basis of SAT solver

zChaft Solver — efficient implementation of DPLL.

Won test of time award at CAV 200i.

