

COL:750/7250

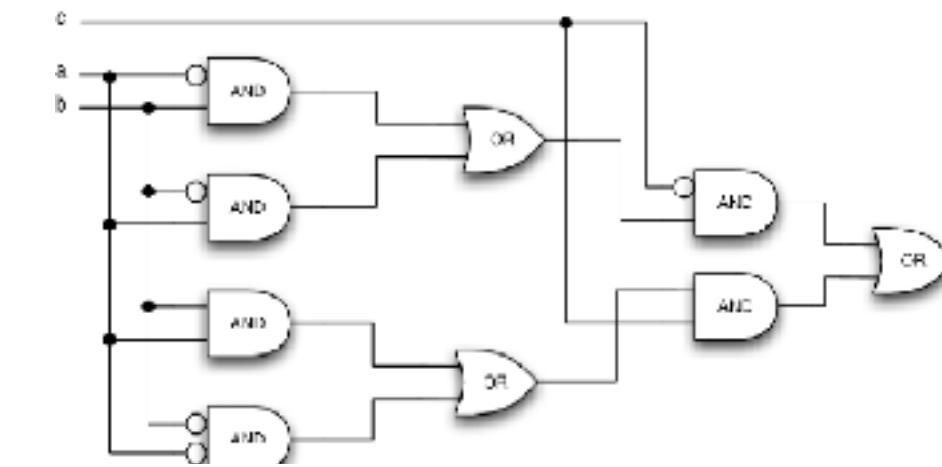
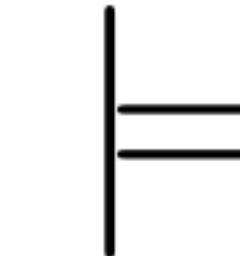
Foundations of Automatic Verification

Instructor: Priyanka Golia

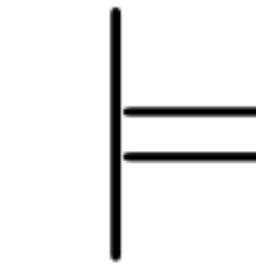
Course Webpage

<https://priyanka-golia.github.io/teaching/COL-750-COL7250/index.html>


```
PC1 (char [] SP, char [] UI) {
    for (int i=0; i<UI.length(); i++) {
        if (SP[i] != UI[i]) return No;
    }
    return Yes;
}
```



System

 $S(I,O)$  $P(I,O)$

Satisfies

Properties

Mathematical model of the system: specification of the property/problem:

- Boolean logic, First Order Logic (FOL), Linear Temporal Logic (LTL), Computational Tree Logic (CTL)
- Tools to check if the model satisfies the property.

What is Logic?

A formal logic is defined by syntax and semantics.

Syntax:

- An alphabet of symbols.
- A finite sequence of these symbols is called expression
- A set of rules defines the well-formed expression.

Semantics:

- Gives meaning to well-formed expressions

Propositional/Boolean Logic

$TakeML \vee TakeFM$

$\neg FirstSucceed \rightarrow TryAgain$

$IsWinter \wedge IsSnow$

Propositional Variables – TakeML, TryAgain,
IsWinter,...

Each Proposition variables stands for a proposition, something that is either True or False

Propositional Connectives— \neg , \vee , \wedge
Links propositions into larger propositional

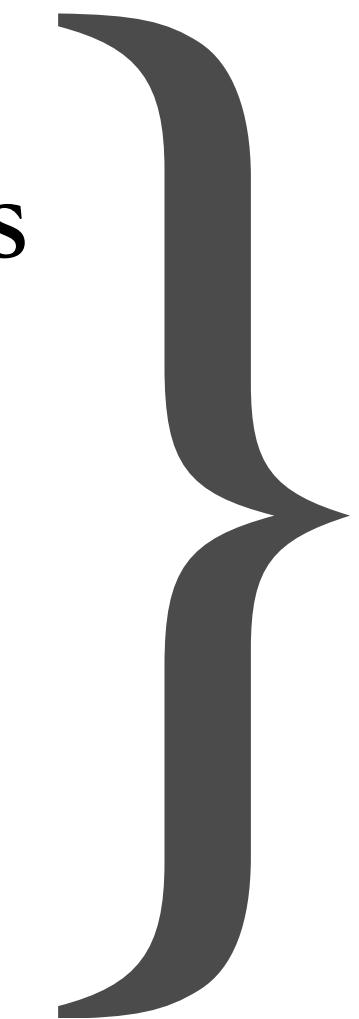
Propositional Logic: Syntax

- (Left parenthesis
-) Right parenthesis
- ¬ Negation
- ∧ Or
- ∨ And
- Condition
- ↔ Bi-Condition

P_1 Propositional variables

P_2

P_n



Logical Symbols: The meaning of logical symbols is always the same.

Non logical Symbols/Propositional Symbols:
The meaning of nonlogical symbols depends on the context.

Propositional Logic: Syntax

Expression is a sequence of symbols.

$$(P_1 \wedge P_2), \quad ((\neg P_1) \vee P_2), \quad)) \leftrightarrow)P_1$$

We defined the set W of **Well-Formed Formulas (WFFs)** as follows:

1. Every expression consists of a single propositional symbol is in W .
2. If α and β are in W , so are
 $(\neg \alpha), (\alpha \vee \beta), (\alpha \wedge \beta), (\alpha \rightarrow \beta), (\alpha \leftrightarrow \beta)$
3. No expression is in W unless forced by (1) and (2).

This definition is **Inductive**: the set being defined is used as part of definition.

Exercise-1: Propositional Logic

How would you use the definition of WFFs to prove that $)) \leftrightarrow)P$ is not a WFF?

Prove that any WFFs has the same number of left parentheses and right parentheses?

How do we parse the following:

$$\neg p \rightarrow q \vee r \rightarrow p \vee q \wedge z$$

Notational Conventions

- Larger variety of propositional symbols: $A, B, C, p_1, p_2, p, q, r, \alpha, \beta$
- Outermost parentheses can be omitted: $p \vee q$ instead of $(p \vee q)$
- Negation symbol binds stronger than binary connectives, and its scope is as small as possible:

$$\neg p \vee q \equiv ((\neg p) \vee q)$$

- $\{ \vee, \wedge \}$ bind stronger than $\{ \rightarrow, \leftrightarrow \}$, for example:

$$p \wedge q \rightarrow \neg r \vee s \equiv ((p \wedge q) \rightarrow ((\neg r) \vee s))$$

- All operators are right-associative.

How do we parse the following:

$$\neg p \rightarrow q \vee r \rightarrow p \vee q \wedge z \equiv ((\neg p) \rightarrow ((q \vee r) \rightarrow (p \vee (q \wedge z))))$$

Propositional Logic: Semantics

Intuitively, given a WFF F and a value (either T or F) for each propositional symbol in F , we should be able to determine the value of F .

$$F = ((p \vee q) \vee r)$$

F is True

$$p = 1, q = 0, r = 0$$

F is called propositional Formula.

A mapping for assigning propositional variables to either 0 and 1, and evaluating F under that mapping.

Propositional Logic: Semantics

- τ is a function that maps proposition variables of a propositional formula to {0,1}.

$$F = ((p \vee q) \vee r)$$
$$\tau : \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$$

We call τ a truth assignment.

- How many such τ (truth assignments) can exists ? $2^{\text{variables}(F)}$

- τ satisfies formula F if and only if $F(\tau)$ is 1,
such a τ is called satisfying assignment

$$F(\tau) : ((1 \vee 0) \vee 1) = 1$$

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

- We use $\tau \models F$ to represent.

Propositional Logic: Semantics

- If there exists a τ such that $\tau \models F$, we say that F is **satisfiable**.

$$F = ((p \vee q) \vee r) \quad \tau : \{p \mapsto 1, q \mapsto 0, r \mapsto 1\} \quad F \text{ is satisfiable}$$

- If for all τ in $2^{\text{variables}(F)}$, $F(\tau)$ is 1, then F is **valid**.

$$\text{Is } F = ((p \vee q) \vee r) \text{ is valid?} \quad \text{Is } F = (p \vee \neg p) \text{ is valid?}$$

- If there does not exist a τ in $2^{\text{variables}(F)}$ such that $F(\tau)$ is 1, then F is **unsatisfiable**.

$$\text{Is } F = ((p \vee q) \vee r) \text{ is unsatisfiable?} \quad \text{Is } F = (p \wedge \neg p) \text{ is unsatisfiable?}$$

Propositional Logic: Semantics

- Set of all satisfying assignment of F is called models. $models(F) = \{\tau \mid F(\tau) = 1\}$

$$Models(\neg F) = \{2^{\text{variables}}\} \setminus Models(F)$$

$$Models(F \vee G) = Models(F) \cup Models(G)$$

$$Models(F \wedge G) = Models(F) \cap Models(G)$$

- Equivalent formulas: Two formulas F and G are considered to be equivalent to each other if and only if they both have same models, that is, if $Models(F) = Models(G), F \equiv G$.

Exercise-2: Propositional Logic

Determine whether the following formulas are satisfiable, unsatisfiable, or valid:

$$(p \vee q) \wedge (\neg p \vee \neg q)$$

$$(p \vee q) \wedge (\neg p \vee \neg q) \wedge (p \leftrightarrow q)$$

$$\{p, p \rightarrow q\} \models q$$

Given n propositional variables, how many Boolean functions $B(p_1, p_2, \dots, p_n)$ can be generated?

Propositional Logic: Semantics

Suppose Σ is a set of WFFs, then $\Sigma \models \alpha$, if **every** truth assignment which satisfies **each** formula in Σ also satisfies α .

To check whether $\{\beta_1, \beta_2, \dots, \beta_n\} \models \alpha$, check the satisfiability of $(\beta_1 \wedge \beta_2 \dots \wedge \beta_n) \wedge (\neg \alpha)$.

If unsatisfiable, then $\{\beta_1, \beta_2, \dots, \beta_n\} \models \alpha$.

Determining Satisfiability

To check whether α is satisfiable, form the truth table for α . If there is a row in which *True* appears as the value for α , then α is satisfiable. Otherwise, α is unsatisfiable.

What is the complexity of this algorithm?

2^n where n is the number of propositional symbols.

How to check the validity of a formula α ?

If $\neg\alpha$ is unsatisfiable then α is valid.

Boolean
/propositional
formulas

---> SAT Solvers

If formula is **SAT**isfiable, gives an satisfying
assignment

UNSAT

Conjunction Normal Form (CNF)

$$\bullet F = (x_1 \vee x_2) \wedge (\neg x_1 \vee x_3)$$

Clauses

Literals : $x_1, \neg x_1, x_2, \neg x_2, x_3, \neg x_3$

$$\text{CNF: } F = C_1 \wedge C_2 \wedge C_3 \dots \wedge C_m$$

$$\text{where } C_i = (l_1 \vee l_2 \vee \dots \vee l_k)$$

$$\text{where } l_j = p; l_j = \neg p$$

Where p is propositional variable

SAT solvers takes
CNF formulas as input.

Can every formula F can be represented in CNF form, say F_{CNF} ?

Can every formula F can be represented in CNF form, say F_{CNF} ?

Yes, every F can be represented in F_{CNF} , such that $F \equiv F_{CNF}$

$F = ((x_1 \wedge \neg x_2) \vee (x_3 \wedge x_4))$ Can you convert F into F_{CNF} ?

$F_{CNF} = (x_1 \vee x_3) \wedge (x_1 \vee x_4) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_2 \vee x_4)$

$F = ((x_1 \wedge \neg x_2) \vee (x_3 \wedge x_4)) \vee (x_5 \wedge x_6)$, Can you convert F into F_{CNF} ?

$F = (x_1 \wedge y_1) \vee \dots \vee (x_n \wedge y_n)$, size of equivalent F_{CNF} ? 2^n

In the worst case, it may take exponential many steps.

Can we do better?

Equisatisfiable Formulas

$$\bullet F = (p \vee \alpha) \wedge (\neg p \vee \beta) \quad G = (\alpha \vee \beta)$$

F and G are Equisatisfiable. F is satisfiable if and only if G is satisfiable.

$F = ((x_1 \wedge \neg x_2) \vee (x_3 \wedge x_4))$ Can you convert F into F_{CNF} ?

$$= (t_1 \leftrightarrow (x_1 \wedge \neg x_2)) \wedge (t_2 \leftrightarrow (x_3 \vee x_4)) \wedge (t_1 \vee t_2)$$

$$= (\neg t_1 \vee (x_1 \wedge \neg x_2)) \wedge (\neg x_1 \vee x_2 \vee t_1) \wedge (\neg t_2 \vee (x_3 \wedge x_4)) \wedge (\neg x_3 \vee \neg x_4 \vee t_2) \wedge (t_1 \vee t_2)$$

$$= (\neg t_1 \vee x_1) \wedge (\neg t_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee t_1) \wedge (\neg t_2 \vee x_3) \wedge (\neg t_2 \vee x_4) \wedge (\neg x_3 \vee \neg x_4 \vee t_2) \wedge (t_1 \vee t_2)$$

$$= F_{CNF}$$

$F = (x_1 \wedge y_1) \vee \dots \vee (x_n \wedge y_n)$, size of equivalent F_{CNF} ? 2n + n + 1

Every formula F can be represented in CNF form, say F_{CNF} in polynomial time such that F is satisfiable if and only if F_{CNF} is satisfiable.

Course Webpage

Thanks!