
Program Synthesis as Dependency Quantified Formula
Modulo Theory?

Priyanka Golia1,2, Subhajit Roy1, and Kuldeep S. Meel2

1 Computer Science and Engineering, Indian Institute of Technology Kanpur, India
2 School of Computing, National University of Singapore, Singapore

Abstract. Given a specification ϕ(X,Y) over inputs X and output Y , defined
over a background theory T, the problem of program synthesis is to design a pro-
gram f such that Y = f(X) satisfies the specification ϕ. Over the past decade,
syntax-guided synthesis (SyGuS) has emerged as a dominant approach for pro-
gram synthesis where in addition to the specification ϕ, the end-user also speci-
fies a grammar L to aid the underlying synthesis engine. This paper investigates
the feasibility of synthesis techniques without grammar, a sub-class defined as
T-constrained synthesis.
We show that T-constrained synthesis can be reduced to DQF(T), i.e., to the
problem of finding a witness of a Dependency Quantified Formula Modulo The-
ory. When the underlying theory is the theory of bitvectors, the corresponding
DQF(BV) problem can be further reduced to Dependency Quantified Boolean
Formulas (DQBF). We rely on the progress in DQBF solving to design DQBF-
based synthesizers that outperform the domain-specific synthesis techniques, thereby
positioning DQBF as a core representation language for program synthesis.

1 Introduction

In this work, we focus on a key problem in programming languages, program synthesis,
and investigate its relationship to DQBF and its generalization, Dependency Quanti-
fied Formulas modulo Theory, henceforth referred to as DQF(T). Given a specification
ϕ(X,Y) over the set of inputs X and the set of outputs Y , the problem of program
synthesis is to synthesize a program f such that Y = f(X) would satisfy the spec-
ification ϕ. A significant breakthrough was achieved with the introduction of Syntax-
Guided Synthesis (SyGuS) formulation wherein in addition to ϕ, the input also contains
a grammar of allowed implementations of f . The grammar helps to constrain the space
of allowed implementation of f , and therefore, it also allows development of techniques
that can efficiently enumerate over the grammar. Often, the end user is primarily con-
cerned with any function that can be expressed using a particular theory T. For the sake
of clarity, we use the term T-constrained synthesis to characterize such class of synthe-
sis problems. T-constrained synthesis is a subclass of SyGuS. Of particular interest is
the recent work in the development of specialized algorithms focused on T-constrained
synthesis, e.g., counterexample-guided quantifier instantiation algorithm in [7].
? The open source tool is available at https://github.com/meelgroup/DeQuS. To

be appeared at IJCAI 2021. Full paper available at https://arxiv.org/abs/2105.
09221

https://github.com/meelgroup/DeQuS
https://arxiv.org/abs/2105.09221
https://arxiv.org/abs/2105.09221

2 Golia, Roy, and Meel

The primary contribution of our work is establishing a connection between Theory-
constrained synthesis and DQF(T). In particular, our work makes the following contri-
butions:

From T-constrained synthesis to DQF(T) We present an reduction of T-constrained
synthesis to DQF(T). DQF(T) lifts the notion of DQBF from the Boolean domain to
general Theory T. We view the simplicity of the reduction from T-constrained synthesis
to DQF(T) as a core strength of the proposed approach.

Efficient T-constrained synthesizers for T=bitvectors The reduction to DQF(T)
opens up new directions for further work. As a first step, we focus on the case when
the T is restricted to bitvector theory, denoted by BV. We observe that the resulting
DQF(BV) instances can be equivalently specified as a DQBF instance. We demonstrate
that our reduction to DQBF allows us to simply plug-in the state of the art DQBF
solvers [9,8].

2 Synthesis via DQF(T)

We propose the reduction of T-constrained synthesis to DQF(T), i.e, to the problem of
finding a witness of a dependency quantified formula modulo theory.

We refer to the function and its (ordered) list of arguments at an invocation (within
ϕ) as its call signature. The set of all call signatures of a function symbol f in ϕ is re-
ferred by CallSigns(f). Note that the number of invocations of a function may not match
|CallSigns(f)|. For example, the following formula ϕ : ∀a, b, c ∃f f(a, b) ∧ f(b, c) ∧
f(b, a)∧f(a, b), has 4 invocations of f while CallSigns(f) = {〈a, b〉, 〈b, c〉, 〈b, a〉}. Note
that 〈a, b〉 and 〈b, a〉 are considered as two different CallSigns of f .
T-Constrained Synthesis to DQF(T): As remarked in Section 1, a key strength of the
reduction is its simplicity. Algorithm 1 formalizes the desired reduction of ϕ to DQF(T)
formulation where ϕ is a specification over the vocabulary of background theory T with
a set of typed function symbols {f1, f2, . . . fm} such that for all fi, |CallSigns(fi)| = 1.
The important point to note is that the Henkin quantifiers must be carefully constructed
so that each fi depends only on the set of variables that appear in its argument-list.

Now, let us turn our attention to the case when there exist a function fi such that
|CallSigns(fi)| > 1. In such cases, we pursue a Ackermannization-style technique
that transforms ϕ into another specification ϕ̂ such that every function fi in ϕ̂ has
|CallSigns(fi)| = 1 (Algorithm 2). Note that this transformation allows the subsequent
use of Algorithm 1 with ϕ̂ to complete the reduction to DQF(T). The proposed trans-
formations in Algorithm 2 are linear in the size of the formula like the transformation
introduced in [5], however Algorithm 2 introduces lesser number of new variables.

The essence of Algorithm 2 is captured in the following two transformations:
(Line 5) We substitute instances of every call signature of fi with fresh function

symbols f j
i (that corresponds to the jth call signature of fi). This reduces the formula

from multiple-callsign to a single-callsign instance.
(Line 6) Introduction of an additional constraint for each fi that forces all the func-

tions f j
i (introduced above) to mutually agree on every possible instantiation of argu-

ments. Specifically, it introduces a fresh function symbol f li
i and a set of fresh variables

Program Synthesis as Dependency Quantified Formula Modulo Theory 3

Algorithm 1: Reducing single-callsign instance ϕ to DQF(T)
Input: A background theory T, a set of typed function symbols {f1, f2, . . . fm}, a

specification ϕ over the vocabulary of T
1 Let X =

⋃
fi
{h | h ∈ CallSigns(fi)}

2 Substitute every invocation of fi with a fresh variable yi in ϕ
3 Define Hi = Set(h) as {h|h ∈ CallSigns(fi)}

Output: ∀X∃H1y1. ∃H2y2 . . .∃Hmymϕ(X,Y)

Algorithm 2: Reducing multiple-callsign to single-callsign instance
Input: A background theory T, a set of typed function symbols {f1, f2, . . . fm}, a

specification ϕ over the vocabulary of T such that `i = |CallSigns(fi)|
1 for i = 1 to m do
2 if |CallSigns(fi)| > 1 then
3 Add a fresh (ordered) set of variables Zi such that |Zi| = |CallSigns(fi)[0]|
4 for j ∈ [0 . . . (`i − 1)] do
5 Replace every fi whose args(fi) = CallSigns(fi)[j] with f j

i

6 Add constraint (args(f j
i) = Zi)→ f j

i (args) = f `i
i (Zi) to ϕ

7 CallSigns(fi)← CallSigns(fi) ∪ {Zi}
Output: A set of typed function symbols {f0

1 , f
2
1 , . . . f

`1
1 , . . . , f0

m . . . f `m
m }, a

specification ϕ̂ over the vocabulary of T such that ∀i, j we have
|CallSigns(f j

i)| = 1

zi1, . . . , z
i
n ∈ Zi such that, for all args(f j

i) argument lists, (args(f j
i) = Zi) =⇒

f j
i (args) = f `i

i (Zi), where j ∈ [0 . . . li−1].
When T is bitvector (BV): When the specification ϕ(X,Y) is in BV. If ϕ(X,Y) is a
multiple-callsign instance, we use Algorithm 2 to covert it to a single-callsign instance
ϕ̂(X̂, Ŷ). We then use Algorithm 1 to generate the DQF(BV) instance of ϕ̂(X̂, Ŷ) as
∀X̂∃H1 ŷ1. . . .∃Hm ŷmϕ̂(X̂, Ŷ). Finally, we solve the DQF(BV) instance by compiling
it down to a DQBF instance, thereby allowing the use of off-the-shelf DQBF solvers.

As the first step to DQBF compilation, we perform bit-blasting over ϕ̂ to obtain ϕ̂′.

∀X̂∃H1 ŷ1 . . . ∃Hm ŷmϕ̂(X̂, Ŷ) ≡ ∀X ′∃X
′
V. ∃H

′
1Y

′

1 . . . ∃H
′
mY

′

mϕ′(X ′, Y ′) (1)

where, X ′, Y
′

i , H
′

i are the (bit-blasted) sets of propositional variables mapping to
the bitvector variables X̂, ŷi, Hi respectively. Furthermore, V is the set of auxiliary
variables introduced during bit-blasting. The auxiliary variables can be allowed to de-
pend on all the input variables X ′. Our current framework simply employs off-the-shelf
SMT solvers for the bit-blasting. As the formula on the right-hand side in Eq. 1 is an
instance of DQBF, we can simply invoke an off-the-shelf certifying DQBF solvers to
generate the Henkin functions for Y ′.

3 Experimental Evaluation

The objective of our experimental evaluation was to study the feasibility of solving
BV-constrained synthesis via the state-of-the-art DQBF solvers. To this end, we per-
form an evaluation over an extensive suite of 645 general-track bitvector (BV) theory

4 Golia, Roy, and Meel

benchmarks from SyGuS competition 2018, 2019. We used CVC4 [7], EUSolver [1],
ESolver [10] as SyGuS-tools. CVC4 was also used in its BV-constrained version. We
used state-of-the-art DQBF (QBF) solvers CADET [6], Manthan [2], DepQBF [4],
DCAQE [9] and DQBDD [8].

Table 1 represents the instances solved by the virtual best solver for SyGuS, BV
constrained, and DQBF tools.

Table 1: Number of SyGuS solved using different techniques. Timeout 900s.

Total SyGuS-tools BV-constrained DQBF-based

SyGuS 645 513 606 610

As shown in Table 1, with syntax guided synthesis, we could synthesize the func-
tions for 513 out of 645 SyGuS instances only, whereas, with BV-constrained synthesis,
we could solve 606 such instances. Surprisingly, BV-constrained synthesis performs
better than the syntax-guided synthesis. Table 1 also shows that the DQBF based syn-
thesis tools perform similar to BV-constrained synthesis tools for SyGuS instances; this
provides strong evidence that the general purpose DQBF solvers can match the effi-
ciency of the domain specific synthesis tools.

We defer to technical report [3] for detailed experiment results.

4 Conclusion

Syntax-guided synthesis has emerged as a dominant paradigm for program synthesis.
Motivated by the impressive progress in automated reasoning, we investigate the usage
of syntax as a tool to aid the underlying synthesis engine. To this end, we formalize the
notion of T-constrained synthesis, which can be reduced to DQF(T). We then focus on
the special case when T = BV . The corresponding BV-constrained synthesis can be
reduced to DQBF, highlighting the importance of the scalability of DQBF solvers.

References
1. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via divide

and conquer. In: Proc. of TACAS (2017)
2. Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for Boolean function syn-

thesis. In: Proc. of CAV (2020)
3. Golia, P., Roy, S., Meel, K.S.: Program synthesis as dependency quantified formula modulo

theory (2021), https://arxiv.org/abs/2105.09221
4. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Proc. of JSAT (2010)
5. Rabe, M.N.: A resolution-style proof system for DQBF. In: Proc. of SAT (2017)
6. Rabe, M.N.: Incremental determinization for quantifier elimination and functional synthesis.

In: Proc. of CAV (2019)
7. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-guided quan-

tifier instantiation for synthesis in SMT. In: Proc. of CAV (2015)
8. Sı̀c̆, J.: Satisfiability of DQBF Using Binary Decision Diagrams. Master’s thesis (2020),

https://is.muni.cz/th/prexv/
9. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Proc. of SAT (2019)

10. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur, R.: TRAN-
SIT: specifying protocols with concolic snippets. ACM SIGPLAN Notices (2013)

https://arxiv.org/abs/2105.09221
https://is.muni.cz/th/prexv/

