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The Life of Computer Engineers since Middle Ages

middle ages:= aka second half of 20th century

How do you know
this is correct?

After some effort ...

input X1, X2;

temp := max(X1, X2);
if (temp < 10) Y :=10;
else Y :=temp;

output Y;

Specification by logical relation
(Y= X)A(Y = X2)A(Y > 10)A
((Y<X1)V(Y < X2)V (Y <10)
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A Vision for the New Age

Wish | had an algorithm Specification by examples
that could help me ... (X [ X ][ ¥ ]
20 | 3 || 30
2 | 9 || 12
5 | 30 || 30

Synthesis' Algorithm

Specification by logical relation
EE--E3- ? (Y > X1+10) A (Y > X2)A
rg o ((Y < X1+10) V(Y < X))
Provably correct system again!

Specification in natural language
Output Y as X if it is at least 10 more than X,
otherwise output X1+ 10



Focus of this talk

Wish | had an algorithm Specification by examples
that could help me ... [ X2 [ Xo [ ¥ |
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Specification by logical relation
Be-EE- | (Y2 X)A(Y = X)A(Y20))
o, T~ (Y <X1)V(Y < X2) V(Y <0))
)

Provably correct system

Specification in natural language
Output Y as max of X1 and X», but if both are
less than 10, then output Y as 10
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Specification as a formula

/ | I /
A System .7
~ (Program or circuit g
Xn ——p to be designed) —— Vm

® Goal: Automatically synthesize system s.t. it satisfies @(x1, .., Xn, V1, .., ¥m) Whenever
possible

— X; input variables (vector X)
— y; output variables (vector Y)

® Need Y as functions F of X such that @(X, F) is satisfied.
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Example: Cryptanalysis

Specification as bit-vector formula
(X: \4 X[n] Yg)/\—\(y1 = 1[n])/\—\(Yg = 1[n])

\ System ’
(program or circuit
to be designed) —> Y,

® Synthesize Y+, Y> as functions of X

— Factorization: Y4, Y> must be non-trivial factors of X
— Efficient solution would break crypto systems

® |s this spec always satisfiable? (No, X can be prime.)

— Synthesis still makes sense even if spec is NOT valid!
— If X is prime, we don’t care what we output

® Goal: Automatically synthesize system s.t. it satisfies @(x1,.., Xn, V1,
possible.

.-,¥Ym) Whenever



Functional Synthesis: Not Just an Abstract Dream

o(X,Y) > Synthesizer |—> Sko;?nr:u:‘:tr;itlon

In a specific format
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Boolean Functional Synthesis

® Goal: Automatically synthesize system s.t. it satisfies @(xi, .., Xn, V1, .., ¥m) Whenever
possible.

Formal definition

Given Boolean relation @(x1, .., Xn, Y1, .+, Ym)
® Xy input variables (vector X)
® y; output variables (vector Y)
Synthesize Boolean functions F;(X) for each y; s.t.

VX( Ely1 <o Ym (P(X7Y1 ‘--ym) A (P(X, F1(X)7'-'Fm(x)) )

Fi(X) is also called a Skolem function for y; in @.
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Example

Let X = {X1,X2}, Y= {y1} and (P(X7 Y) =Xx1 VX2V ¥

Possible Skolem function: F1(x1,x2) 1= —(x1 V x2)

X Ye(X.v) (X, Fi(X))
x1=0,x%=0 y;=1 True True
x1=0,xo=1 y;=1 True True
x1=1,x%=0 y;=1 True True
x1=1,x%=1 yy=1 True True

Many possible Skolem functions:
Fi(x1,%2) = —xq

Fi(x1,%2) = —x2

(P(X, Fi (X)) = Xi \/Xg\/(_'(X1 \/Xg))

VX(3Ye(X,Y) = o(X,Fi(X)))

F1 (X1 7X2) =1



A storied history

Skolem functions play an important role in first order logic
® Getting rid of existential quantifiers

® Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

® Skolemization and “Skolem-Normal form”

® Focus on existence of form, NOT computability.
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A storied history

Skolem functions play an important role in first order logic
® Getting rid of existential quantifiers

® Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

® Skolemization and “Skolem-Normal form”

® Focus on existence of form, NOT computability.

We can trace this history even further back

® Existence and construction of Boolean unifiers

® Boole’'1847, Lowenheim’1908.
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Application Domain 1: Program Synthesis

Given a specification ¢, automatically synthesize a program ©? such that 2 = ¢.

Specifications

® | ogical specifications
® Test cases (examples)
® Natural Language

® Demonstrations/Traces
® Programs

A popular approach: Syntax-Guided Synthesis (SyGuS)*
® a background theory (eg. theory of bit-vectors)

® a semantic correctness specification (in the background theory)
® alanguage to represent the synthesized program (as a context-free grammar)

* Alur et al.,FMCAD'13



Application Domain 1: Algorithms for Program Synthesis 1

CEGIS (Enumerative)

Candidate Program

p—

Reduction to Functional Synthesis

Functional

Systhesis

Problem Instance.
Encoder
—

Property.

Functional
Synthesis
Engine

e iti
proof o ursatistabiity [“Property | | prosiam

*CEGIS(Sym): Solar-Lezama, STTT'12. CEGIS(Enum): Alur et al.,
*FMCAD'13; Alur et al., TACAS’17; SyPR: Verma and Roy, ESEC/FSE'17;
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1: Link to Boolean Functional Synthesis*

9(x1,x2) > x1 and
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Application Domain

: Link to Boolean Functional Synthesis*

g(x1,x2) > x; and
g(x1 ,Xz) > xo and
(9(x1,X2) == xq or
9(xq,%2) == xz)

y1 2 xy and
y1 2 xe and
(i ==x or
Y1 == X1)

Vx1, X2 Jy1 ©(x1, X2, 1)

® Synthesize program representing
function g that satisfies the
specification.

® Replace every call of functions g
by a new variable y; in the
specification.

® Works with appropriate caveats,

e.g., outputs depend on all inputs.

)

The synthesized skolem function is an implementation of the function g(x1, x2).

*Golia et al., IJCAI'21



Application Domain 2: Games and planning

Conway’s Game of Life

® |[nfinite 2D grid of cells, each alive or dead in each gen:
@ (Under-pop) live cell with < 2 live neighbors dies;
@ (Status-quo) live cell with 2 or 3 live neighbors lives;
@ (Over-pop) live cell > 3 live neighbors dies;
© (Re-birth) dead cell with 3 live neighbors comes alive



https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Conway’s Game of Life

® |[nfinite 2D grid of cells, each alive or dead in each gen:
@ (Under-pop) live cell with < 2 live neighbors dies;
@ (Status-quo) live cell with 2 or 3 live neighbors lives;
@ (Over-pop) live cell > 3 live neighbors dies;
© (Re-birth) dead cell with 3 live neighbors comes alive



https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Conway’s Game of Life

® [nfinite 2D grid of cells, each alive or dead in each gen:

@ (Under-pop) live cell with < 2 live neighbors dies;
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° : Is there a Garden of Eden (GoE), a configuration with no predecessor?
— If it does not exist, give a witnessing function that defines the predecessor!
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Application Domain 2: Games and planning

Conway’s Game of Life

® |[nfinite 2D grid of cells, each alive or dead in each gen:
@ (Under-pop) live cell with < 2 live neighbors dies;
@ (Status-quo) live cell with 2 or 3 live neighbors lives;
@ (Over-pop) live cell > 3 live neighbors dies;
© (Re-birth) dead cell with 3 live neighbors comes alive

° : Is there a Garden of Eden (GoE), a configuration with no predecessor?

— If it does not exist, give a witnessing function that defines the predecessor!
— History from 1971 onwards...
(https://conwaylife.com/wiki/Garden_of Eden)
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Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

® Let X be current position, Y be previous position and T(X, Y) be transition function
® Then GoE does not exist iff YX3Y T(X,Y) is satisfiable!

® A witness that GoE does not exist is a Skolem function for Y.

e VX3Y T(X,Y) has alternating blocks of quantifiers: . In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

VX1E|Y1VX23Y2...VXkE|Yk(p

where @ is a Quantifier-free Boolean Formula, X;, Y; are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(3-player)!
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Other applications

Quantifier elimination (Of course!)

— 3AY(X,Y)=o(X,F(X)) used in fundamental operations like image computation, interpolant
generation, computing predicate abstractions etc.

® Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’ 16
— Example: subtract, min, max, floor of avg, sort.

Disjunctive decomposition of transition relations Trivedi’'03
Circuit repair Gitina et al’13, Jiang et al.’20, Fujita et al.’20

— Complete the implementation of a circuit such that it is functionally equivalent to the
specification.

® Reactive synthesis
— Synthesizing winning strategy within the winning region.

20
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How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.
Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity *

® Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
¢ for which Skolem function sizes must be super-polynomial or even exponential in |@|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

*8. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV'18, FMSD'20

i)



A Survey of Existing Techniques

1. Extract Skolem functions from proof of validity of YX3Y@(X,Y)
Bendetti'05, Jussilla et al.’07, Balabanov et al.’12, Heule et al. 14

— Efficient if a short proof of validity is found.
2. Using templates
Solar-Lezama et al.’06, Srivastava et al.13
— Effective when small set of candidate Skolem functions known.
3. Self-substitution + function composition
Jiang’09, Trivedi’'03
— Craig Interpolation-based approach.

24



Existing Approaches (Cont.)

Phase Il

4. Incremental determinization
Rabe et al’17,18

— Incrementally adds new constraints to the formula to generate a unique Skolem function.

5. Quantifier instantiation techniques in SMT solvers
Barrett et al’15, Bierre et al.’17
— Works even for bit-vector and other theories.
6. Input/output component separation
Chakraborty et al.’18
— View specification as made of input and output components.
— Alternate analysis of each component to generate decision lists.
7. Synthesis from and as ROBDDs
— Kukula et al.00, Kuncak et al. 10, Fried et al. 16, Tabajara et al. 17

o5



Existing Approaches (Cont.)

Phase Ill: The Modern Age!

8. Counter-example guided Skolem function generation (
— Over-approximate initial guess of Skolem functions + refine
John et al’15, Akshay et al’17,;18,20
— Machine-learn initial Skolem function + MaxSat-based iterative repair
Golia et al.’20, 21
9. Knowledge Compilation for Boolean Functional Synthesis (
— Synthesis negation normal forms (SynNNF)
Akshay et al’19
— Subset-And-Unsatisfiable Normal Form (SAUNF)
Shah et al."21

)

Our focus in the deep-dive: These last approaches!

26



Counter-example guided Skolem function generation
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Synthesis via special normal forms
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o Application Domains

Q Theoretical Hardness and Practical Algorithms
© Deep Dives

@ Tool Demo

0 Conclusion and the Way Forward
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Deep Dive 1: Counter-example guided Skolem function generation

Input (X, Y)

Y

Preprocessing

!

“Guess” Candidate
Functions

@eck

Yes

No

Repair

Output F

} Simple but effective!

or

} Machine-learning (Manthan)
Function-approx (BFSS)
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The Preprocessing Module

@(X,Y) — Preprocessing — ¢(X,Y)

¢ Skolem functions of @(X, Y)

— are (or can be extended to) Skolem functions for @(X, Y).
— are easier to synthesise at least for some variables.
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The Preprocessing Module

@(X,Y) — Preprocessing — ¢(X,Y)

¢ Skolem functions of @(X, Y)

— are (or can be extended to) Skolem functions for @(X, Y).
— are easier to synthesise at least for some variables.

Pre-process your input

® For unate variables, constant functions suffice. e.g., if §|,—¢ = ¢|,—1 then F; =1.
® Uniquely defined variables are easy, e.g., Tseitin variables. y; is uniquely defined in

(p(X, Y) :/\(y1 (—)(X1\/X2))/\...

These simple checks are surprisingly effective; handle many variables.
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The Check Module

How do we check if a given function is a correct Skolem function?

Given functions Fi,... Fr, is VX(3YQ(X,Y) < o(X,F(X)) ?
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The Check Module

How do we check if a given function is a correct Skolem function?

Given functions Fi, ... Fp, is VX(3YQ(X,Y) < o(X,F(X) ) ?
Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al’15]
® Propositional error formula:
E(X,Y,Y):=@(X,Y)A=@(X, YIA(Y < F(X))
® Suppose C: satisfying assignment of E

- ¢(o[X],0[Y]) =1, o[Y]=F(o[X]), o(c[X],c[(Y)])=0
— o is counterexample to the claim that F1,... F, are all correct Skolem functions.

® [ unsatisfiable iff Fq,... F,, are all correct Skolem functions.
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The Repair Module

E(X,Y,Y) = 0(X,Y)A=0(X, YA (Y < F(X))

° Leto:={xi—~1,x2—=1,y1—1,yo— 1,y — 0,y,— 0} be a counter-example.

What to Repair?

® |dea: Repair all F; where o[y;] # o[y/].
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The Repair Module

E(X,Y,Y) = 0(X,Y)A=0(X, YA (Y < F(X))
° Leto:={xi—~1,x2—=1,y1—1,yo— 1,y — 0,y,— 0} be a counter-example.

What to Repair?

* |dea: Repair all F; where o[y;] # o[y/].
® But (X, Y) is Boolean Relation, say 6 = {x; — 1, X% — 1, )1+ 0,y —1,y{ — 0,y5 — 0}
— In this case, we don’t need to repair F;.

® Improvement: MaxSAT-based Identification of nice counterexamples
— Hard Clauses (X, Y) A (X <> o[X]); Soft Clauses (Y «> o[Y]).

How to Repair?

e For improved cex G, we want to repair F». Idea: From G: if x; A xo A -4, then set yo = 1.

® Improvement: Use UNSAT Core of @(X,Y) Ax; AXxa A —yy A—ye.
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Machine-learning based guessing of candidate Skolem functions (Manthan)
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Preprocessing v*

Data Generation
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Data Generation

Standing on the Shoulders of Constrained Samplers

Q(x1,X2,¥1,)2)

X1 X2 Y1)
o 0 1 0
o 1 0 1
1 0 1 1
1 1 0 O

7



Learn Candidate Functions

Taming the Curse of Abstractions via Learning with Errors

Xt X2 Y1 )e
0O O 1 0
0 1 0 1
1 0 1 1
1 1 0O O

()

Ty )
\

/;_f/\ /\’\
el

(o)

ﬂ 1

.ﬁ..r*ﬁ.

p1 = (=x1 A—x2),
p2 = (X1 A—x2)

fy = if p1 then 1
elif po then 1

else 0

p1 = (—x1 Ayy),

p2 := (x1 Ay1)

fy = if p1 then 1
elif po then 1
else 0
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Data Generation

Potential Strategy: Randomly sample satisfying assignment of @(X, Y).

Challenge: Multiple valuations of y4, y» for same valuation of x1, x.
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Data Generation

Potential Strategy: Randomly sample satisfying assignment of @(X, Y).

Challenge: Multiple valuations of y4, y» for same valuation of x1, x.

Q(x1, %2, ¥1,¥2) : (a1 VX2V y1) A(—xqg V—xe V —y)

X4 X2 )4 )z
0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0
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Data Generation

O(x1, %2, y1,¥2) : (X1 VX2V y1) A(—x1 V —xa V)

X1 X2 W Y2
0 O 1 o
o 1 01 on
1 0 01 01
1 1 01 0

Uniform Sampler
>

X1 X2 Y1)
O 0 1 1
0o 1 o 1
1 O 0 1
1 1 0 O
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Data Generation

O(x1, %2, ¥1,¥2) : (1 VX2V y1) A(—xg V—xe V =)

X1 X2 W Y2
0 O 1 o
o 1 01 on
1 0 01 01
1 1 01 0

Uniform Sampler
>

® Possible Skolem functions:
- Fi(x1,x%) ==(x1 VX2)
- Fa(x1, %) = (X1 AX)

Fi(x1,%) =—x1  Fi(xq,x2) =—x2  Fi(x1,%)=
Fo(xi,x2) =—x1  Fo(x1,x2) = X2 Fo(x1,%2) =

40



Data Generation

O(x1, %2, ¥1,¥2) : (1 VX2V y1) A(—xg V—xe V =)

X1 X2 Y1 W2 X1 X2 Y1 )2
0 0 1 01 Magical Sampler 0 0 1 0
0 1 01 o0/ > 0 1 1 0
1 0 0/1 0/1 1 0 1 0
1 1 01 0 1 1 1 0

® Possible Skolem functions:
- Fi(xi, %) ==(x1Vx2) Fi(x,%)=-x Fi(x,%)="% Fi(x,x)=1
- Fo(x1,%) =-(x1 Ax2)  Fo(xi,x2) =—x1  Fo(X1,%) =X Fa(x1,x)=0
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Weighted Sampling to Rescue

W:XUY—[0,1]

The probability of generation of an assignment is proportional to its weight.

W)= ] w(z) [ (1-w(2))

G(Zi):1 G(Z,')ZO

Example: W(x;) =05 W(x2) =05 W(y;)=0.9 W(y»)=0.1
(o :{X1 = 1,% =0,y —0,) — 1}

W(c1) = 0.5 x (1—0.5) x (1—0.9) x 0.1 = 0.0025

® Uniform sampling is a special case where all variables are assigned weight of 0.5.
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Data Generation

Generate Samples with
W(x)=0.5
W(y) =0.9

Compute Weights g;

Generate Samples with
W(x)=0.5
W(y,) =0.1

Generate Samples with
W(X,') =0.5
W(yi)=qi
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Different Sampling Strategies

® Knowledge representation based Mutation based techniques

techniques (Dutra, Laeufer, Bachrach, Sen,
(Yuan,Shultz, Pixley,Miller,Aziz 2018)
1999) e Markov Chain Monte Carlo based
(Yuan,Aziz, Pixley,Albin, 2004) techniques

(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)

® Hashing based techniques

(Wei and Selman,2005)
( Kitchen,2010)

Constraint solver based techniques

. (Ermon, Gomes, Sabharwal,
é%?ikzrzt:g;ty, Meel, and Vardi 2013, Selman,2012)

(Soos, Meel, and Gocht 2020) Belief networks based techniques

(Dechter, Kask, Bin, Emek,2002)
( Gogate and Dechter,2006)
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Machine-learning based guessing of candidate Skolem functions (Manthan)
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Preprocessing v~
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Learn Candidate Function: Decision Tree Classifier

O(x1,X%2,¥1,¥2) - (X1 VX2V y1 ) A(—xg V—xe V —y2)

® Tolearn y»
— Feature set: valuation of xy, x2, y1
— Label: valuation of y»
— Learn decision tree to represent y» in
terms of x1, X2, 1

® To learn yq
— Feature set: valuation of xq, xo
— Label: valuation of y;
— Learn decision tree to represent y; in
terms of x1, x>

X1 X2 Y1 Yo
0 O 1 0
0 1 0 1
1 0 1 1
1 1 0 O
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Learning Candidate Functions

p1 = (—x1 A—xe),
po = (X1 /\—\Xg)
= if py then 1

D)
;\r ﬁ
T2 elif po then 1
; ‘<h else 0

T

X1 X2 i )e \{/C
&

2

- a0 o0
= )
o s 0 =
o 2 a0




Learning Candidate Functions

X1 Xe Y1 e f p1 = (—x1 Ax),

po = (X1 /\—\Xg)

/ fy = if p1 then 1

) elif po then 1
J : else 0

JOL

- a0 o0
= )
o s 0 =
o 2 a0

Can reorder p1, po
Learning one level decision list
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What Kind of Learning

(a1) p1 = (—x1 Axz),
\{y‘J\l} P2 := (x1 Ax2)
_ — fy = if p1 then 1
> /T" | T;\ elif po then 1

- a0 o0
= )
o 20 =
o 2 a0

D—<1 »—<1
else 0

Learning without Error
Every row is a solution of ¢(X, Y)

Learning with Errors

The data is only a subset of solutions.
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Reuvisiting the Repair Module: Candidate Identification

E(X,Y,Y):=0(X,Y)A=@(X,Y)A (Y + F(X))
® 6= E(X,Y,Y’) be a counterexample to fix.
e Use MaxSAT to find a nicer counterexample ¢’

® Repair patches: If x; A xo A=y then yo =1
————

B:{)ﬁ X2, )1 }
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Repair: Adding Level to Decision List

® Candidates are from one level
decision list:
— Learned decision tree: If p; then 1,
elif po then 1, else 0.
— p1, p2 can be reordered.

Can reorder py, po
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Repair: Adding Level to Decision List

Candidates are from one level
decision list:
— Learned decision tree: If p; then 1,
elif po then 1, else 0.

- n reoraereaq.
(£ 23 I D EEEEE Can reorder B, B2

Suppose in repair iterations, we have
learned: If By then 1, ..., then O

Can reorder py, po

B1 and B> can be reordered.

From one-level decision list to
two-level decision list.
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Manthan

X1 X2 Y1 Ve o)
X, Y 1 0 1
3(:’{)2]7)(2} Data Generation> 8 ? 0 ? Learn Candidates> 0/“-‘\'1/\1\0?-”2\1
Y ={y1,} 1 o 1 0 J& f&
1 1 o 1
Verify Candidates
Input 9(X, Y)

_ SAT, G Check Satisfiabilit
Go(X,Y) ——— ISTabiiity

of E(X,Y,Y')

- UNSAT Core-based Repair
i

Yes
Out;ut F Retu rn F

Guess Candidate
Functions v
I}

Data Generation v H

UNSAT
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Deep Dive 2

Knowledge Compilation for Boolean Functional Synthesis
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Deep Dive 2: Knowledge Representations and Compilation for Synthesis

® The Guess-check-repair approach was input-agnostic.
e Suffers from worst-case exponential blowup (unavoidable due to hardness results).
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® The Guess-check-repair approach was input-agnostic.
e Suffers from worst-case exponential blowup (unavoidable due to hardness results).

This leads us to ask

® Are there special properties of input specification which guarantee provably fast/small
solutions?

® Can we develop new algorithms exploiting these properties?

Leads us to the rich area of Knowledge representations and Knowledge compilation.
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Deep Dive 2: Knowledge Representations and Compilation for Synthesis
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Deep Dive 2: Knowledge Representations and Compilation for Synthesis

Input @(X, Y)
|

Y

Preprocessing

!

Compiler

o(X,Y)

Polytime Engine

T
]

OQutput F

The question we will address in this deep dive...

What is @(X, Y), i.e., representation of input s.t., Polytime Engine suffices for synthesis?
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What if there is only one output, i.e., | Y| = 1.
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Let’s start with a simple case
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Spec (X, y1):
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Let’s start with a simple case

What if there is only one output, i.e.,

Y| =1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec (X, y1): 9(X,1) is a Skolem function for y; in @(X, y1)

For any X, we have 3y10(X,y1) < o(X,1)Vo(X,0) & o(X,0(X,1)).

® —¢(X,0) is also a correct Skolem function.

® Any interpolant between these two is also a correct Skolem function. Jiang '09, Trivedi '03.
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Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ¢(X, y1,...ym): Transform to 1-output synthesis
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Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ¢(X, y1,...ym): Transform to 1-output synthesis
e Construct new spec @' (X, ym) = 3y1.. . Ym1 @
— Inputs X, output y,

Synthesize F,(X) for y,, from ¢’
Construct new spec ¢ (X, Ym—1,Ym) =31 Ym—2@
— Inputs X, ym; output y,—+

Synthesize Fp,—1(X, ym) for ym_1; substitute Fp,(X) for yn,
® Repeat ...

So, to compute Skolem functions, just need to efficiently compute

1oy X, s Yim) Vi € {1,...m}
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Existential Quantification with NNF circuits
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Existential Quantification with NNF circuits

3}/1 (p(X7 Y)

Potential doubling of
size

Circuit of
A and V gates
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Over-approximating dy; @(X, Y) Sans Doubling

O(X, Y1, Ym)lyr=1

NNF
Circuit of
A and V gates

(X, Y15+ Ym)lyr=0

NNF
Circuit of
A and V gates
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Over-approximating dy; @(X, Y) Sans Doubling

O(X,y1, 71, Y2, Y35 - Ym) ys =yr=1

NNF
Circuit
monotone
in y; and y1

n Y Yn Yn X, —X
A Always holds
O(X, Y1, Ym)lyr=1 Iy 9(X, ¥) (X, y1,--- Ym)lyr=0

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates
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Can We Represent Quantification Exactly sans Blow-up?

O(X,y1, 71, Y2, Y35 - Ym) lys =yr=1

NNF
Circuit
monotone
in y; and y1

n Y Yo T¥n X, =X
v When does this hold???
(P(Xa}/1v--}’m)‘y|:1 En LP(X, Y) (P(Xv}’h-H,Vm)ly‘:O

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates
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The positive form and existential quantification

Take first output: Iy1@(X,Y) = @ |, =1 y7=1.
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The positive form and existential quantification

Take first output: 3y1@(X,Y) = @ |,,—15—=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowe have 3 ¢( , ) & @| —1——17?

® Exactly when
- 01 ly=ty=1 =
- 19X, Y) & <p|y1 =1 V@ly= =0

> (P|,V171 A 9')’1—1,}’1—0 =0
> ¢ly=0 © @|y=0y=1 =0
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The positive form and existential quantification

Take first output: Jy19(X,Y) = @ |,,—15=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowe have 3 @( , ) & @| —1——17?

n|vm|e
® Exactly when ] 1T 11
- 01 |y=1y=1 =1 11010
- Ely1(p(xa Y) < @ |,V1=1 \ ¢ |y1=0 =0 0 ] 0
> Qly=1 & f|y1=1,y7=o =0 ololo
» Qly=0 © O|y=0y=1 =0
» (By monotonicity of @ w.r.t y; and 1) @ |y, —oy=0 = O
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The positive form and existential quantification

Take first output: 3y1@(X,Y) = @ |,,=15=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowehave 3 @( , ) & @ —1—=17

e Exactly when il
- ¢ lymtyiet = 1 1 1 1
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The positive form and existential quantification

Take first output: 3y1@(X,Y) = @ |,,—15=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowe have 3 @( , ) & @ —1—=17?

® Exactly when Rz
= Q1 == =1 11111
- Ely1(‘p(xﬂ Y) -~ (p|y1:1 \/ (p|,V1:0 = 0 1 O 0
> Qly=1 & §|y1:1,71:o =0 0 1 0
» ¢ly=0 © @ly=0y=1 =0 ololo
» (By monotonicity of  w.r.t y; and 77) @ |y, =oy=0 = O
® For some values for other outputs and inputs, @ =y AY.

So, what should we avoid?
® For some values for the other variables, we have @ < y; A Y.

60




The positive form and existential quantification

Take first output: 3y1@(X,Y) = @ |,,—15—=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowehave 3 @( , ) £ Q| —1—=1?

® Exactly when i | Al ®
= Ot ly=tz=1 = T[1]1
—3y1<p(XY)<:><PIy11 Vol =0 11010
> Oly=1 € @ly=17=0 =0 0/1]0
> (P|}’1=0 < (P|}/1:0,}71:1 =0 0 0 0

» (By monotonicity of  w.r.t y; and 77) @ |y, —oy=0 = O

e For some values for other outputs and inputs, @ = y; A V7.

So, what should we avoid?

e For some values for the other variables, we have ¢ < y; A V7.
* If we can avoid it, we get 3y1Q(X, Y) < @ |y, =1 yr=1
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The positive form and existential quantification

Take first output: y19(X,Y) = @ |,,—15=1. When does the reverse implication hold?
Let’s ask the opposite.

Whendowe have 3 @( , ) & @| —1——17?

e Exactly when i | vi|e
= Q1 ly=ty=1 =1 U
- (X, Y) & @ly=1 VOl =0 1]101|0
> Oly=1 © @ly=1y=0 =0 o[1]o0
> @ly=0 & @ly=0p=1 =0 ~ ololo
» (By monotonicity of @ w.r.t y; and 77) @ |y, =030 = O
® For some values for other outputs and inputs, ® = y; A Y.

So, what should we avoid?

® For some values for the other variables, we have @ < y; A Y.
* If we can avoid it, we get 3y19(X,Y) < @ |y,=1 yr=1
® Can generalize this to multiple outputs...
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A simple yet special Normal Form

® Weak Decomposable Negation Normal Form (WDNNF)*: Forbidden structure/syntax

o(X.Y)

*S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18.
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A semantic Normal Form

® Synthesis Negation Normal Form (SynNNF)*: Forbidden semantics

P(X, Y) # (v AYi)

~— ' N e
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A semantic Normal Form

® Synthesis Negation Normal Form (SynNNF)*: Forbidden semantics

P(X, Y) # (v AYi)

All 1's Every possible assignment

T 1T 1
: \y{ oo . 77_/ ...W:ﬂ

*S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD'19.

A2



A semantic Normal Form

® Synthesis Negation Normal Form (SynNNF)*: Forbidden semantics

P(X, Y) # (v AYi)

Al 1’s

T 1T 1
: \yf/ oo . 77_/ ...Y:fn/

S, Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
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SynNNF: A negation normal form for efficient synthesis

Skolem fn for y; (in terms of yii1,...Ym, X)
® Jyt,e Vit O(X,y1s Vi1, 1, Vit Ym)

* Adnan Darwiche, J. App. Non Class. Logics'01

(%]



SynNNF: A negation normal form for efficient synthesis

Skolem fn for y; (in terms of yii1,...Ym, X)

® Jy1,. . Yi1 (P(X,}/1,---yl'71,1,y1'+1,---}/m)
e Equivalently, 6 |y1=1,yT:1,-.~yf71=1,wf1=1,yf=1ﬂ:0’ if @ in SynNNF

* Adnan Darwiche, J. App. Non Class. Logics'01

(%]
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Skolem fn for y; (in terms of yii1,...Ym, X)
® Ay, Vit O(X,y1ye Vi, 1, Vit s Yim)
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SynNNF: A negation normal form for efficient synthesis
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SynNNF: A negation normal form for efficient synthesis

Skolem fn for y; (in terms of yii1,...Ym, X)
O 3.}/17"‘}//.71 (P(X7y17'"y/.*1717y/.+17"'ym)
e Equivalently, @ |y1=1,yT:1,‘.~y,-71=1,}/T1=1,y,-=17W:0’ if @ in SynNNF

Poly-time/sized Skolem functions!

Observations:

® Not purely structural restriction on representation of @
® Reminiscent of Deterministic DNNF (dDNNF)*
— For every V node representing @1 V @2, require 1 A @ = L.

* Adnan Darwiche, J. App. Non Class. Logics'01
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Comparing the Normal Forms

® Every wDNNF, DNNF circuit is also in SynNNF.
® Every FBDD, ROBDD can be compiled in linear time to SynNNF.

S

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

S

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

o’

What more can we do?

® Does there exists a necessary and sufficient condition for efficient synthesis?

® Subset-And-Unrealizable Normal Form (SAUNF) p.shan, A Bansal, s. Akshay, S. Chakraborty, LICS21.
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Compilation to SynNNF and SAUNF

® \What about general classes of specs?
— CNF specs: NNF circuits don’t always admit efficient synthesis

Compiling CNF to SynNNF [Akshay et al. FMCAD’19.]

® Algorithm for compilation: uses ideas from dDNNF-compilation and more

® Prototype implementation C2Syn
® Worst-case exponential-time and space
— Unavoidable due to hardness results

v

Compiling CNF to SAUNF [Shah et al. LICS’21.]

® Algorithm for compilation

® Future work: Implementation and comparisons!
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Tool Demo: Pipeline

| An SMT Formula |

bit-blasting
\ 4
VX3Yo(X,Y)

gdimacs

| BFSS/Manthan

R Skolem Synthesizer ------ ':

v

| Circuit Simulator
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Tool Demo: Pipeline

| An SMT Formula |

bit-blasting
\ 4
VX3Yo(X,Y)

qgdimacs

; v
.| BFSS/Manthan

~------ Skolem Synthesizer ----

| Circuit Simulator

T (set-logic BV)

2;; out function with two 2 bit arguments

3 (declare-fun out ( (_ BitVec 2) (_ BitVec 2)) (_ Bitvec 2))

4;; declaring the constant

5 (declare-const inpl (_ BitVec 2))

6 (declare-const inp2 (_ BitVec 2))

7;; output of out function should be greater than or equal to first input
8 (assert (bvuge (out inpl inp2) inpl))

9;; output of out function should be greater than or equal to second input
10 (assert (bvuge (out inpl inp2) inp2)

11;; output of out function should be either be equal to first input

12;; or to the second input

13 (assert (or (= inpl (out inpl inp2)) (= inp2 (out inpl inp2))))

14 (check-sat)|
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Tool Demo: Pipeline

1(set-logic BV)
2 ;; out function with two 2 bit arguments
3 (declare-fun out ( (_ BitVec 2) (_ BitVec 2)) (_ BitVec 2))

| An SMT Formula |
5 (declare-const inpl (_ BitVec 2))
6 (declare-const inp2 (_ BitVec 2))

output of out function should be greater than or equal to first input

8 (assert (bvuge (out inpl inp2) inpl))
9;; output of out function should be greater than or equal to second input

b|t'b|a3t|ng H ssert (bvuge (out inpl inp2) inp2)

; output of out function should be either be equal to first input
12;; or to the second input

' 13 (assert (or (= inpl (out inpl inp2)) (= inp2 (out inpl inp2))))

14 (check-sat)|

vX3Yoe(X,Y
( ) An SMT formula

qgdimacs

1p enf 12 32
se

| BFSS/Manthan HEO

| 5 sa1o

-+ Skolem Synthesizer -+

|_Circuit Simulator Qdimacs formula Synthesized Skolem function

87



o Application Domains

Q Theoretical Hardness and Practical Algorithms
Q Deep Dives

@ Tool Demo

9 Conclusion and the Way Forward

A8



Summary

Functional Synthesis is a fundamental problem with wide variety of applications
— program synthesis, games and planning, circuit repair

Long history of work that has sought to push the scalability envelope
An exciting and diverse set of approaches

— Guess, check, and repair
— Knowledge representation

Promise of scalability: Out of 609 benchmarks
2018 247 solved
2019 280 solved
2020 356 solved
2021 509 solved

A9



Where do we go from here?

Ao Dp o~

Benchmarks

Notion of Quality

Beyond Single Functions
Beyond Propositional Logic
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Future Directions |: Benchmarks

Promise of scalability: Out of 609 benchmarks
2018 SOTA 247 solved
2019 SOTA 280 solved
2020 SOTA 356 solved
2021 SOTA 509 solved

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more
investment in foundational tools, while improvements in the foundational tools drive further
applications. Around and around.
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Future Directions II: Search for Optimal Functions

® The current formulation allows the solver to find an arbitrary functions

® Opportunity to formalize the notion of quality

Smaller size?

Uses gates of particular type?
Readable?
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Future Directions Ill: Beyond Single Functions

® Enumeration of functions: Knowledge compilation
® Uniform sampling of functions: randomized strategies

® Counting of functions
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Future Directions IV: Beyond Propositional Logic

® Past twenty years: Development of solvers with satisfiability modulo theory solvers
— Capable of handling theories such as string, bitvectors, linear real arithmetic

® Lifting synthesis techniques to SMT
— Knowledge compilation
— Machine Learning techniques for SMT learning
— Repair techniques
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Questions?

Promise of scalability: Out of 609 benchmarks
2018 SOTA 247 solved
2019 SOTA 280 solved
2020 SOTA 356 solved
2021 SOTA 509 solved
The Future:
. Benchmarks

—_

2. Notion of Quality
3. Beyond Single Functions
4. Beyond Propositional Logic
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