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The Life of Computer Engineers since middle ages
middle ages:= aka second half of 20th century

Wish I had a system
that could work like

this ...

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10
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The Life of Computer Engineers since Middle Ages
middle ages:= aka second half of 20th century

After some effort ...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

input X1, X2;
temp := max(X1, X2);
if (temp < 10) Y := 10;
else Y := temp;
output Y;

How do you know
this is correct?
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A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm

Provably correct system

X 1, X 2 Y
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A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 30
2 9 12
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1+10)∧ (Y ≥ X 2)∧(
(Y ≤ X 1+10)∨ (Y ≤ X 2)

)

Specification in natural language
Output Y as X 2 if it is at least 10 more than X 1,

otherwise output X 1 +10

Synthesis Algorithm

Provably correct system again!

X 1, X 2 Y
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Focus of this talk

Wish I had an algorithm
that could help me ...

Provably correct system

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 0)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 0)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm
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Automated Functional Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible

– xi input variables (vector X )
– yj output variables (vector Y )

• Need Y as functions F of X such that ϕ(X ,F) is satisfied.
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Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X

– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable? (No, X can be prime.)
– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.
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Functional Synthesis: Not Just an Abstract Dream

ϕ(X ,Y )

In a specific format

Synthesizer Skolem function
simulator
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Boolean Functional Synthesis

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

Formal definition

Given Boolean relation ϕ(x1, ..,xn,y1, ..,ym)

• x1 input variables (vector X )

• yj output variables (vector Y )

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . .ym ϕ(X ,y1 . . .ym) ⇔ ϕ(X ,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.
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Example

Let X = {x1,x2}, Y = {y1} and ϕ(X ,Y ) = x1∨ x2∨ y1

Possible Skolem function: F1(x1,x2) := ¬(x1∨ x2)

ϕ(X ,F1(X)) = x1∨ x2∨ (¬(x1∨ x2))

X ∃Y ϕ(X ,Y ) ϕ(X ,F1(X))

x1 = 0,x2 = 0 y1 = 1 True True
x1 = 0,x2 = 1 y1 = 1 True True
x1 = 1,x2 = 0 y1 = 1 True True
x1 = 1,x2 = 1 y1 = 1 True True

 ∀X(∃Y ϕ(X ,Y )≡ ϕ(X ,F1(X)) )

Many possible Skolem functions:
F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1
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A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.
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Outline

First part: Applications and Overview
1 Application Domains
2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
I Counter-example guided and Data-driven approaches

Coffee break
– Knowledge representations for efficient synthesis

4 Tool demo
5 Conclusion and the Way Forward
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Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward
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Application Domain 1: Program Synthesis

Given a specification ϕ, automatically synthesize a program P such that P |= ϕ.

Specifications
• Logical specifications

• Test cases (examples)

• Natural Language

• Demonstrations/Traces

• Programs

A popular approach: Syntax-Guided Synthesis (SyGuS)∗

• a background theory (eg. theory of bit-vectors)

• a semantic correctness specification (in the background theory)

• a language to represent the synthesized program (as a context-free grammar)

∗Alur et al.,FMCAD’13
15
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Application Domain 1: Algorithms for Program Synthesis ∗†

CEGIS (Symbolic)

SyPR: Proof-Guided Repairs

CEGIS (Enumerative)

Reduction to Functional Synthesis

∗CEGIS(Sym): Solar-Lezama, STTT’12. CEGIS(Enum): Alur et al.,
†FMCAD’13; Alur et al., TACAS’17; SyPR: Verma and Roy, ESEC/FSE’17;

16



Application Domain 1: Link to Boolean Functional Synthesis∗

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)

• Synthesize program representing
function g that satisfies the
specification.

• Replace every call of functions g
by a new variable y1 in the
specification.

∀x1,x2 ∃y1 ϕ(x1,x2,y1)

The synthesized skolem function is an implementation of the function g(x1,x2).

∗Golia et al., IJCAI’21
17
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y1 == x1)

• Synthesize program representing
function g that satisfies the
specification.

• Replace every call of functions g
by a new variable y1 in the
specification.
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e.g., outputs depend on all inputs.
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The synthesized skolem function is an implementation of the function g(x1,x2).
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Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!
– History from 1971 onwards...

(https://conwaylife.com/wiki/Garden_of_Eden)

18
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Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y ) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y ) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y ) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19
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• ∀X∃Y T (X ,Y ) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!
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Other applications

• Quantifier elimination (Of course!)
– ∃Y ϕ(X ,Y )≡ ϕ(X ,F(X)) used in fundamental operations like image computation, interpolant

generation, computing predicate abstractions etc.

• Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’16
– Example: subtract, min, max, floor of avg, sort.

• Disjunctive decomposition of transition relations Trivedi’03
• Circuit repair Gitina et al.’13, Jiang et al.’20, Fujita et al.’20

– Complete the implementation of a circuit such that it is functionally equivalent to the
specification.

• Reactive synthesis
– Synthesizing winning strategy within the winning region.
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First part: Applications and Overview
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2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
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– Knowledge representations for efficient synthesis

4 Tool demo
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How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard

(not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
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A Survey of Existing Techniques

Phase I

1. Extract Skolem functions from proof of validity of ∀X∃Y ϕ(X ,Y )
Bendetti’05, Jussilla et al.’07, Balabanov et al.’12, Heule et al.’14

– Efficient if a short proof of validity is found.

2. Using templates
Solar-Lezama et al.’06, Srivastava et al.’13

– Effective when small set of candidate Skolem functions known.

3. Self-substitution + function composition
Jiang’09, Trivedi’03

– Craig Interpolation-based approach.
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Existing Approaches (Cont.)

Phase II
4. Incremental determinization

Rabe et al.’17,’18
– Incrementally adds new constraints to the formula to generate a unique Skolem function.

5. Quantifier instantiation techniques in SMT solvers
Barrett et al.’15, Bierre et al.’17

– Works even for bit-vector and other theories.

6. Input/output component separation
Chakraborty et al.’18

– View specification as made of input and output components.
– Alternate analysis of each component to generate decision lists.

7. Synthesis from and as ROBDDs
– Kukula et al.’00, Kuncak et al.’10, Fried et al.’16, Tabajara et al.’17
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Existing Approaches (Cont.)

Phase III: The Modern Age!

8. Counter-example guided Skolem function generation (Guess + check + repair)
– Over-approximate initial guess of Skolem functions + refine

John et al.’15, Akshay et al.’17,’18,’20
– Machine-learn initial Skolem function + MaxSat-based iterative repair

Golia et al.’20, ’21

9. Knowledge Compilation for Boolean Functional Synthesis (Special normal forms)
– Synthesis negation normal forms (SynNNF)

Akshay et al.’19
– Subset-And-Unsatisfiable Normal Form (SAUNF)

Shah et al.’21

Our focus in the deep-dive: These last approaches!
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Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y )

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Machine-learning based
or
Function-approx based
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Synthesis via special normal forms

Preprocessing

Input ϕ(X ,Y )

Compiler

Polytime Engine

Output F

ϕ̂(X ,Y )
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Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward
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Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y )

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning (Manthan)
or
Function-approx (BFSS)

Formal methods
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The Preprocessing Module

Preprocessingϕ(X ,Y ) ϕ̂(X ,Y )

• Skolem functions of ϕ̂(X ,Y )

– are (or can be extended to) Skolem functions for ϕ(X ,Y ).
– are easier to synthesise at least for some variables.

Pre-process your input

• For unate variables, constant functions suffice. e.g., if ϕ|y=0 =⇒ ϕ|y=1 then F1 = 1.

• Uniquely defined variables are easy, e.g., Tseitin variables. y1 is uniquely defined in

ϕ(X ,Y ) := . . .∧ (y1↔ (x1∨ x2))∧ . . .

These simple checks are surprisingly effective; handle many variables.
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Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y )

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!
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The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y ) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y )∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X ],σ[Y ]) = 1, σ[Y ′] = F(σ[X ]), ϕ(σ[X ],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.
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The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y )∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi ] 6= σ[y ′i ].

• But ϕ(X ,Y ) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}
– In this case, we don’t need to repair F1.

• Improvement: MaxSAT-based Identification of nice counterexamples
– Hard Clauses ϕ(X ,Y )∧ (X ↔ σ[X ]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y )∧ x1∧ x2∧¬y1∧¬y2.
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• But ϕ(X ,Y ) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.
• Improvement: MaxSAT-based Identification of nice counterexamples

– Hard Clauses ϕ(X ,Y )∧ (X ↔ σ[X ]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2.

Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y )∧ x1∧ x2∧¬y1∧¬y2.
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Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y )

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods
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Machine-learning based guessing of candidate Skolem functions (Manthan)

Preprocessing

Input ϕ(X ,Y )

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods
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Data Generation
Standing on the Shoulders of Constrained Samplers

ϕ(x1,x2,y1,y2)

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
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Learn Candidate Functions
Taming the Curse of Abstractions via Learning with Errors

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1 := (¬x1∧¬y1),
p2 := (x1∧ y1)
f1 = if p1 then 1

elif p2 then 1

else 0

38



Data Generation

Potential Strategy: Randomly sample satisfying assignment of ϕ(X ,Y ).

Challenge: Multiple valuations of y1,y2 for same valuation of x1,x2.

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0
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Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Uniform Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2)

F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

– F2(x1,x2) = ¬(x1∧ x2)

F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0
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Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Magical Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2) F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1
– F2(x1,x2) = ¬(x1∧ x2) F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0
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Weighted Sampling to Rescue

• W : X ∪Y 7→ [0,1]

• The probability of generation of an assignment is proportional to its weight.

W (σ) = ∏
σ(zi)=1

W (zi) ∏
σ(zi)=0

(1−W (zi))

• Example: W (x1) = 0.5 W (x2) = 0.5 W (y1) = 0.9 W (y2) = 0.1
σ1 = {x1 7→ 1,x2 7→ 0,y1 7→ 0,y2 7→ 1}

W (σ1) = 0.5× (1−0.5)× (1−0.9)×0.1 = 0.0025

• Uniform sampling is a special case where all variables are assigned weight of 0.5.
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Data Generation

Generate Samples with
W (xi) = 0.5
W (yi) = 0.9

Generate Samples with
W (xi) = 0.5
W (yi) = 0.1

Compute Weights qi

Generate Samples with
W (xi) = 0.5
W (yi) = qi
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Different Sampling Strategies

• Knowledge representation based
techniques

(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)

• Hashing based techniques
(Chakraborty, Meel, and Vardi 2013,
2014,2015)
(Soos, Meel, and Gocht 2020)

• Mutation based techniques
(Dutra, Laeufer, Bachrach, Sen,
2018)

• Markov Chain Monte Carlo based
techniques

(Wei and Selman,2005)
( Kitchen,2010)

• Constraint solver based techniques
(Ermon, Gomes, Sabharwal,
Selman,2012)

• Belief networks based techniques
(Dechter, Kask, Bin, Emek,2002)
( Gogate and Dechter,2006)
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Machine-learning based guessing of candidate Skolem functions (Manthan)

Preprocessing

Input ϕ(X ,Y )

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods
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Learn Candidate Function: Decision Tree Classifier

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

• To learn y2

– Feature set: valuation of x1,x2,y1

– Label: valuation of y2

– Learn decision tree to represent y2 in
terms of x1,x2,y1

• To learn y1

– Feature set: valuation of x1,x2

– Label: valuation of y1

– Learn decision tree to represent y1 in
terms of x1,x2

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
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Learning Candidate Functions

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1

p21

1 0

1 0

1 0
Can reorder p1,p2

Learning one level decision list
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What Kind of Learning

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

Learning without Error
Every row is a solution of ϕ(X ,Y )

Learning with Errors
The data is only a subset of solutions.
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Revisiting the Repair Module: Candidate Identification

E(X ,Y ,Y ′) := ϕ(X ,Y )∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• σ |= E(X ,Y ,Y ′) be a counterexample to fix.

• Use MaxSAT to find a nicer counterexample σ′

• Repair patches: If x1∧ x2∧¬y1︸ ︷︷ ︸
β={x1,x2,¬y1}

then y2 = 1
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Repair: Adding Level to Decision List

• Candidates are from one level
decision list:

– Learned decision tree: If p1 then 1,
elif p2 then 1, else 0.

– p1, p2 can be reordered.

• Suppose in repair iterations, we have
learned: If β1 then 1, . . . β2 then 0
. . . ...

• β1 and β2 can be reordered.

• From one-level decision list to
two-level decision list.

β1

β2
1

0

p1

p21

1 0

1 0

1 0

01

1 0

Can reorder β1,β2

Can reorder p1,p2
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Manthan

ϕ(X ,Y )
X = {x1,x2}
Y = {y1,y2}

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

Check Satisfiability
of E(X ,Y ,Y ′)

Gσ(X ,Y )

Return F

Data Generation Learn Candidates

Verify Candidates

SAT, σ

UNSATUNSAT Core-based Repair

Preprocessing

Input ϕ(X ,Y )

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes
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Deep Dive 2
Knowledge Compilation for Boolean Functional Synthesis

52



Deep Dive 2: Knowledge Representations and Compilation for Synthesis

• The Guess-check-repair approach was input-agnostic.

• Suffers from worst-case exponential blowup (unavoidable due to hardness results).

This leads us to ask
• Are there special properties of input specification which guarantee provably fast/small

solutions?

• Can we develop new algorithms exploiting these properties?

Leads us to the rich area of Knowledge representations and Knowledge compilation.
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Deep Dive 2: Knowledge Representations and Compilation for Synthesis

Preprocessing

Input ϕ(X ,Y )

Compiler

Polytime Engine

Output F

ϕ̂(X ,Y )

The question we will address in this deep dive...

What is ϕ̂(X ,Y ), i.e., representation of input s.t., Polytime Engine suffices for synthesis?
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Preprocessing

Input ϕ(X ,Y )

Compiler
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Output F

ϕ̂(X ,Y )

The question we will address in this deep dive...

What is ϕ̂(X ,Y ), i.e., representation of input s.t., Polytime Engine suffices for synthesis?
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Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.
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Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis

• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}
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Existential Quantification with NNF circuits

ϕ(X ,Y )

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y )|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Potential doubling of
size

57



Existential Quantification with NNF circuits

ϕ(X ,Y )

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1

ϕ(X ,Y )|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Potential doubling of
size

57



Existential Quantification with NNF circuits

ϕ(X ,Y )

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y )|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Potential doubling of
size

57



Existential Quantification with NNF circuits

ϕ(X ,Y )

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y )|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Potential doubling of
size

57



Existential Quantification with NNF circuits

ϕ(X ,Y )

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y )|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Potential doubling of
size

57



Over-approximating ∃y1 ϕ(X ,Y ) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58



Over-approximating ∃y1 ϕ(X ,Y ) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58



Over-approximating ∃y1 ϕ(X ,Y ) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58



Over-approximating ∃y1 ϕ(X ,Y ) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y )

Always holds

58



Can We Represent Quantification Exactly sans Blow-up?
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The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y ) ⇒ ϕ̂ |y1=1,y1=1.
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y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

So, what should we avoid?

• For some values for the other variables, we have ϕ̂⇔ y1∧ y1.

• If we can avoid it, we get ∃y1ϕ(X ,Y ) ⇔ ϕ̂ |y1=1,y1=1

• Can generalize this to multiple outputs...
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A simple yet special Normal Form

• Weak Decomposable Negation Normal Form (wDNNF)∗: Forbidden structure/syntax

ϕ(X ,Y )

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1

· · · · · ·︸ ︷︷ ︸
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· · ·︸ ︷︷ ︸
¬yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

∧

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18.
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A semantic Normal Form

• Synthesis Negation Normal Form (SynNNF)∗: Forbidden semantics

ϕ̂(X ,Y ) 6⇔ (yk ∧ yk)
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· · · · · ·︸ ︷︷ ︸
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All 1’s Every possible assignment

∗S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
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· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸
yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

All 1’s Every possible assignment

∗S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
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SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X )

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
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Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.
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Compilation to SynNNF and SAUNF

• What about general classes of specs?
– CNF specs: NNF circuits don’t always admit efficient synthesis

Compiling CNF to SynNNF [Akshay et al. FMCAD’19.]
• Algorithm for compilation: uses ideas from dDNNF-compilation and more

• Prototype implementation C2Syn
• Worst-case exponential-time and space

– Unavoidable due to hardness results

Compiling CNF to SAUNF [Shah et al. LICS’21.]
• Algorithm for compilation

• Future work: Implementation and comparisons!
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Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y )

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs

An SMT formula

Qdimacs formula Synthesized Skolem function
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Summary

• Functional Synthesis is a fundamental problem with wide variety of applications
– program synthesis, games and planning, circuit repair

• Long history of work that has sought to push the scalability envelope
• An exciting and diverse set of approaches

– Guess, check, and repair
– Knowledge representation

• Promise of scalability: Out of 609 benchmarks

2018 247 solved
2019 280 solved
2020 356 solved
2021 509 solved
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Where do we go from here?

1. Benchmarks

2. Notion of Quality

3. Beyond Single Functions

4. Beyond Propositional Logic
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Future Directions I: Benchmarks

Promise of scalability: Out of 609 benchmarks

2018 SOTA 247 solved

2019 SOTA 280 solved

2020 SOTA 356 solved

2021 SOTA 509 solved

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more
investment in foundational tools, while improvements in the foundational tools drive further
applications. Around and around.
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Future Directions II: Search for Optimal Functions

• The current formulation allows the solver to find an arbitrary functions

• Opportunity to formalize the notion of quality

• Smaller size?

• Uses gates of particular type?

• Readable?
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Future Directions III: Beyond Single Functions

• Enumeration of functions: Knowledge compilation

• Uniform sampling of functions: randomized strategies

• Counting of functions
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Future Directions IV: Beyond Propositional Logic

• Past twenty years: Development of solvers with satisfiability modulo theory solvers
– Capable of handling theories such as string, bitvectors, linear real arithmetic

• Lifting synthesis techniques to SMT
– Knowledge compilation
– Machine Learning techniques for SMT learning
– Repair techniques
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Questions?

Promise of scalability: Out of 609 benchmarks

2018 SOTA 247 solved

2019 SOTA 280 solved

2020 SOTA 356 solved

2021 SOTA 509 solved

The Future:

1. Benchmarks

2. Notion of Quality

3. Beyond Single Functions

4. Beyond Propositional Logic
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