
Automated Synthesis: Towards the Holy Grail of AI

Kuldeep S. Meel1, Supratik Chakraborty2, S Akshay2, Priyanka Golia1,3, Subhajit Roy3

1National University of Singapore
2Indian Institute of Technology Bombay
3Indian Institute of Technology Kanpur

IJCAI-2022

1

The Life of Computer Engineers since middle ages
middle ages:= aka second half of 20th century

Wish I had a system
that could work like

this ...

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

2

The Life of Computer Engineers since middle ages
middle ages:= aka second half of 20th century

Wish I had a system
that could work like

this ...

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

2

The Life of Computer Engineers since middle ages
middle ages:= aka second half of 20th century

Wish I had a system
that could work like

this ...

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

2

The Life of Computer Engineers since middle ages
middle ages:= aka second half of 20th century

Wish I had a system
that could work like

this ...

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10
2

The Life of Computer Engineers since Middle Ages
middle ages:= aka second half of 20th century

After some effort ...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

input X1, X2;
temp := max(X1, X2);
if (temp < 10) Y := 10;
else Y := temp;
output Y;

How do you know
this is correct?

3

The Life of Computer Engineers since Middle Ages
middle ages:= aka second half of 20th century

After some effort ...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

input X1, X2;
temp := max(X1, X2);
if (temp < 10) Y := 10;
else Y := temp;
output Y;

How do you know
this is correct?

3

The Life of Computer Engineers since Middle Ages
middle ages:= aka second half of 20th century

After some effort ...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

input X1, X2;
temp := max(X1, X2);
if (temp < 10) Y := 10;
else Y := temp;
output Y;

How do you know
this is correct?

3

A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm

Provably correct system

X 1, X 2 Y

4

A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm

Provably correct system

X 1, X 2 Y

4

A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 10)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 10)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm

Provably correct system

X 1, X 2 Y

4

A Vision for the New Age

Wish I had an algorithm
that could help me ...

Specification by examples
X 1 X 2 Y

20 3 30
2 9 12
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1+10)∧ (Y ≥ X 2)∧(
(Y ≤ X 1+10)∨ (Y ≤ X 2)

)

Specification in natural language
Output Y as X 2 if it is at least 10 more than X 1,

otherwise output X 1 +10

Synthesis Algorithm

Provably correct system again!

X 1, X 2 Y

5

Focus of this talk

Wish I had an algorithm
that could help me ...

Provably correct system

X 1, X 2 Y

Specification by examples
X 1 X 2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Specification by logical relation
(Y ≥ X 1)∧ (Y ≥ X 2)∧ (Y ≥ 0)∧(
(Y ≤ X 1)∨ (Y ≤ X 2)∨ (Y ≤ 0)

)

Specification in natural language
Output Y as max of X 1 and X 2, but if both are

less than 10, then output Y as 10

Synthesis Algorithm

6

Automated Functional Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible

– xi input variables (vector X)
– yj output variables (vector Y)

• Need Y as functions F of X such that ϕ(X ,F) is satisfied.

7

Automated Functional Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible

– xi input variables (vector X)
– yj output variables (vector Y)

• Need Y as functions F of X such that ϕ(X ,F) is satisfied.

7

Automated Functional Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible

– xi input variables (vector X)
– yj output variables (vector Y)

• Need Y as functions F of X such that ϕ(X ,F) is satisfied.

7

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X

– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable? (No, X can be prime.)
– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X
– Factorization: Y 1,Y 2 must be non-trivial factors of X

– Efficient solution would break crypto systems
• Is this spec always satisfiable? (No, X can be prime.)

– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X
– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable? (No, X can be prime.)
– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X
– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable?

(No, X can be prime.)
– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X
– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable? (No, X can be prime.)

– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Example: Cryptanalysis

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y 1,Y 2 as functions of X
– Factorization: Y 1,Y 2 must be non-trivial factors of X
– Efficient solution would break crypto systems

• Is this spec always satisfiable? (No, X can be prime.)
– Synthesis still makes sense even if spec is NOT valid!
– If X is prime, we don’t care what we output

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

8

Functional Synthesis: Not Just an Abstract Dream

ϕ(X ,Y)

In a specific format

Synthesizer Skolem function
simulator

9

Boolean Functional Synthesis

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

Formal definition

Given Boolean relation ϕ(x1, ..,xn,y1, ..,ym)

• x1 input variables (vector X)

• yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . .ym ϕ(X ,y1 . . .ym) ⇔ ϕ(X ,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

10

Boolean Functional Synthesis

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

Formal definition

Given Boolean relation ϕ(x1, ..,xn,y1, ..,ym)

• x1 input variables (vector X)

• yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . .ym ϕ(X ,y1 . . .ym) ⇔ ϕ(X ,F1(X), . . .Fm(X))

)

Fj(X) is also called a Skolem function for yj in ϕ.

10

Boolean Functional Synthesis

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

Formal definition

Given Boolean relation ϕ(x1, ..,xn,y1, ..,ym)

• x1 input variables (vector X)

• yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . .ym ϕ(X ,y1 . . .ym) ⇔ ϕ(X ,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

10

Example

Let X = {x1,x2}, Y = {y1} and ϕ(X ,Y) = x1∨ x2∨ y1

Possible Skolem function: F1(x1,x2) := ¬(x1∨ x2)

ϕ(X ,F1(X)) = x1∨ x2∨ (¬(x1∨ x2))

X ∃Y ϕ(X ,Y) ϕ(X ,F1(X))

x1 = 0,x2 = 0 y1 = 1 True True
x1 = 0,x2 = 1 y1 = 1 True True
x1 = 1,x2 = 0 y1 = 1 True True
x1 = 1,x2 = 1 y1 = 1 True True

 ∀X(∃Y ϕ(X ,Y)≡ ϕ(X ,F1(X)))

Many possible Skolem functions:
F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

11

Example

Let X = {x1,x2}, Y = {y1} and ϕ(X ,Y) = x1∨ x2∨ y1

Possible Skolem function: F1(x1,x2) := ¬(x1∨ x2)

ϕ(X ,F1(X)) = x1∨ x2∨ (¬(x1∨ x2))

X ∃Y ϕ(X ,Y) ϕ(X ,F1(X))

x1 = 0,x2 = 0 y1 = 1 True True
x1 = 0,x2 = 1 y1 = 1 True True
x1 = 1,x2 = 0 y1 = 1 True True
x1 = 1,x2 = 1 y1 = 1 True True

 ∀X(∃Y ϕ(X ,Y)≡ ϕ(X ,F1(X)))

Many possible Skolem functions:
F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

11

Example

Let X = {x1,x2}, Y = {y1} and ϕ(X ,Y) = x1∨ x2∨ y1

Possible Skolem function: F1(x1,x2) := ¬(x1∨ x2)

ϕ(X ,F1(X)) = x1∨ x2∨ (¬(x1∨ x2))

X ∃Y ϕ(X ,Y) ϕ(X ,F1(X))

x1 = 0,x2 = 0 y1 = 1 True True
x1 = 0,x2 = 1 y1 = 1 True True
x1 = 1,x2 = 0 y1 = 1 True True
x1 = 1,x2 = 1 y1 = 1 True True

 ∀X(∃Y ϕ(X ,Y)≡ ϕ(X ,F1(X)))

Many possible Skolem functions:
F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

11

A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

12

A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back

• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

12

A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

12

Outline

First part: Applications and Overview
1 Application Domains
2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
I Counter-example guided and Data-driven approaches

Coffee break
– Knowledge representations for efficient synthesis

4 Tool demo
5 Conclusion and the Way Forward

13

Outline

First part: Applications and Overview
1 Application Domains
2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
I Counter-example guided and Data-driven approaches

Coffee break
– Knowledge representations for efficient synthesis

4 Tool demo
5 Conclusion and the Way Forward

13

Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward

14

Application Domain 1: Program Synthesis

Given a specification ϕ, automatically synthesize a program P such that P |= ϕ.

Specifications
• Logical specifications

• Test cases (examples)

• Natural Language

• Demonstrations/Traces

• Programs

A popular approach: Syntax-Guided Synthesis (SyGuS)∗

• a background theory (eg. theory of bit-vectors)

• a semantic correctness specification (in the background theory)

• a language to represent the synthesized program (as a context-free grammar)

∗Alur et al.,FMCAD’13
15

Application Domain 1: Program Synthesis

Given a specification ϕ, automatically synthesize a program P such that P |= ϕ.

Specifications
• Logical specifications

• Test cases (examples)

• Natural Language

• Demonstrations/Traces

• Programs

A popular approach: Syntax-Guided Synthesis (SyGuS)∗

• a background theory (eg. theory of bit-vectors)

• a semantic correctness specification (in the background theory)

• a language to represent the synthesized program (as a context-free grammar)

∗Alur et al.,FMCAD’13
15

Application Domain 1: Program Synthesis

Given a specification ϕ, automatically synthesize a program P such that P |= ϕ.

Specifications
• Logical specifications

• Test cases (examples)

• Natural Language

• Demonstrations/Traces

• Programs

A popular approach: Syntax-Guided Synthesis (SyGuS)∗

• a background theory (eg. theory of bit-vectors)

• a semantic correctness specification (in the background theory)

• a language to represent the synthesized program (as a context-free grammar)
∗Alur et al.,FMCAD’13

15

Application Domain 1: Algorithms for Program Synthesis ∗†

CEGIS (Symbolic)

SyPR: Proof-Guided Repairs

CEGIS (Enumerative)

Reduction to Functional Synthesis

∗CEGIS(Sym): Solar-Lezama, STTT’12. CEGIS(Enum): Alur et al.,
†FMCAD’13; Alur et al., TACAS’17; SyPR: Verma and Roy, ESEC/FSE’17;

16

Application Domain 1: Link to Boolean Functional Synthesis∗

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)

• Synthesize program representing
function g that satisfies the
specification.

• Replace every call of functions g
by a new variable y1 in the
specification.

∀x1,x2 ∃y1 ϕ(x1,x2,y1)

The synthesized skolem function is an implementation of the function g(x1,x2).

∗Golia et al., IJCAI’21
17

Application Domain 1: Link to Boolean Functional Synthesis∗

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)

• Synthesize program representing
function g that satisfies the
specification.

• Replace every call of functions g
by a new variable y1 in the
specification.

∀x1,x2 ∃y1 ϕ(x1,x2,y1)

The synthesized skolem function is an implementation of the function g(x1,x2).

∗Golia et al., IJCAI’21
17

Application Domain 1: Link to Boolean Functional Synthesis∗

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)

• Synthesize program representing
function g that satisfies the
specification.

• Replace every call of functions g
by a new variable y1 in the
specification.

• Works with appropriate caveats,
e.g., outputs depend on all inputs.

∀x1,x2 ∃y1 ϕ(x1,x2,y1)

The synthesized skolem function is an implementation of the function g(x1,x2).

∗Golia et al., IJCAI’21
17

Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!
– History from 1971 onwards...

(https://conwaylife.com/wiki/Garden_of_Eden)

18

https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!
– History from 1971 onwards...

(https://conwaylife.com/wiki/Garden_of_Eden)

18

https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!

– History from 1971 onwards...
(https://conwaylife.com/wiki/Garden_of_Eden)

18

https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!
– History from 1971 onwards...

(https://conwaylife.com/wiki/Garden_of_Eden)

18

https://conwaylife.com/wiki/Garden_of_Eden

Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19

Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19

Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19

Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19

Application Domain 2: Games and planning

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X ,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X ,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y .

• ∀X∃Y T (X ,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X 1∃Y 1∀X 2∃Y 2 . . .∀X k∃Y k ϕ

where ϕ is a Quantifier-free Boolean Formula, X i ,Y i are sequences of variables.

Any 2-player game can be coded as QBF—Skolem functions are winning strategies of Player 2
(∃-player)!

19

Other applications

• Quantifier elimination (Of course!)
– ∃Y ϕ(X ,Y)≡ ϕ(X ,F(X)) used in fundamental operations like image computation, interpolant

generation, computing predicate abstractions etc.

• Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’16
– Example: subtract, min, max, floor of avg, sort.

• Disjunctive decomposition of transition relations Trivedi’03
• Circuit repair Gitina et al.’13, Jiang et al.’20, Fujita et al.’20

– Complete the implementation of a circuit such that it is functionally equivalent to the
specification.

• Reactive synthesis
– Synthesizing winning strategy within the winning region.

20

Other applications

• Quantifier elimination (Of course!)
– ∃Y ϕ(X ,Y)≡ ϕ(X ,F(X)) used in fundamental operations like image computation, interpolant

generation, computing predicate abstractions etc.
• Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’16

– Example: subtract, min, max, floor of avg, sort.

• Disjunctive decomposition of transition relations Trivedi’03
• Circuit repair Gitina et al.’13, Jiang et al.’20, Fujita et al.’20

– Complete the implementation of a circuit such that it is functionally equivalent to the
specification.

• Reactive synthesis
– Synthesizing winning strategy within the winning region.

20

Other applications

• Quantifier elimination (Of course!)
– ∃Y ϕ(X ,Y)≡ ϕ(X ,F(X)) used in fundamental operations like image computation, interpolant

generation, computing predicate abstractions etc.
• Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’16

– Example: subtract, min, max, floor of avg, sort.

• Disjunctive decomposition of transition relations Trivedi’03

• Circuit repair Gitina et al.’13, Jiang et al.’20, Fujita et al.’20
– Complete the implementation of a circuit such that it is functionally equivalent to the

specification.
• Reactive synthesis

– Synthesizing winning strategy within the winning region.

20

Other applications

• Quantifier elimination (Of course!)
– ∃Y ϕ(X ,Y)≡ ϕ(X ,F(X)) used in fundamental operations like image computation, interpolant

generation, computing predicate abstractions etc.
• Synthesizing arithmetic functions from specifications of arithmetic relations Fried et al.’16

– Example: subtract, min, max, floor of avg, sort.

• Disjunctive decomposition of transition relations Trivedi’03
• Circuit repair Gitina et al.’13, Jiang et al.’20, Fujita et al.’20

– Complete the implementation of a circuit such that it is functionally equivalent to the
specification.

• Reactive synthesis
– Synthesizing winning strategy within the winning region.

20

Outline

First part: Applications and Overview
1 Application Domains
2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
I Counter-example guided and Data-driven approaches

Coffee break
– Knowledge representations for efficient synthesis

4 Tool demo
5 Conclusion and the Way Forward

21

Outline

First part: Applications and Overview
1 Application Domains
2 Theoretical hardness and a high level survey of algorithms

Short break (5 minutes): Stretch yourselves!

Second part: Deep Dive into Recent Advances
3 Two Approaches

– The Guess-check-and-Repair algorithmic paradigm
I Counter-example guided and Data-driven approaches

Coffee break
– Knowledge representations for efficient synthesis

4 Tool demo
5 Conclusion and the Way Forward

21

Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward

22

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard

(not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard

(not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

How Hard is Boolean Functional Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean functional synthesis is NP-hard (not surprising!).

Space complexity ∗

• Unless some well-regarded complexity-theoretic conjectures fail, there exist specifications
ϕ for which Skolem function sizes must be super-polynomial or even exponential in |ϕ|.

Bottomline: Efficient algorithms for Boolean functional synthesis unlikely

Also note: use of SAT-solvers inevitable or unavoidable!

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18, FMSD’20
23

A Survey of Existing Techniques

Phase I

1. Extract Skolem functions from proof of validity of ∀X∃Y ϕ(X ,Y)
Bendetti’05, Jussilla et al.’07, Balabanov et al.’12, Heule et al.’14

– Efficient if a short proof of validity is found.

2. Using templates
Solar-Lezama et al.’06, Srivastava et al.’13

– Effective when small set of candidate Skolem functions known.

3. Self-substitution + function composition
Jiang’09, Trivedi’03

– Craig Interpolation-based approach.

24

Existing Approaches (Cont.)

Phase II
4. Incremental determinization

Rabe et al.’17,’18
– Incrementally adds new constraints to the formula to generate a unique Skolem function.

5. Quantifier instantiation techniques in SMT solvers
Barrett et al.’15, Bierre et al.’17

– Works even for bit-vector and other theories.

6. Input/output component separation
Chakraborty et al.’18

– View specification as made of input and output components.
– Alternate analysis of each component to generate decision lists.

7. Synthesis from and as ROBDDs
– Kukula et al.’00, Kuncak et al.’10, Fried et al.’16, Tabajara et al.’17

25

Existing Approaches (Cont.)

Phase III: The Modern Age!

8. Counter-example guided Skolem function generation (Guess + check + repair)
– Over-approximate initial guess of Skolem functions + refine

John et al.’15, Akshay et al.’17,’18,’20
– Machine-learn initial Skolem function + MaxSat-based iterative repair

Golia et al.’20, ’21

9. Knowledge Compilation for Boolean Functional Synthesis (Special normal forms)
– Synthesis negation normal forms (SynNNF)

Akshay et al.’19
– Subset-And-Unsatisfiable Normal Form (SAUNF)

Shah et al.’21

Our focus in the deep-dive: These last approaches!

26

Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Machine-learning based
or
Function-approx based

27

Synthesis via special normal forms

Preprocessing

Input ϕ(X ,Y)

Compiler

Polytime Engine

Output F

ϕ̂(X ,Y)

28

Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward

29

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning (Manthan)
or
Function-approx (BFSS)

Formal methods

30

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning (Manthan)
or
Function-approx (BFSS)

Formal methods

30

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning (Manthan)
or
Function-approx (BFSS)

Formal methods

30

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning (Manthan)
or
Function-approx (BFSS)

Formal methods

30

The Preprocessing Module

Preprocessingϕ(X ,Y) ϕ̂(X ,Y)

• Skolem functions of ϕ̂(X ,Y)

– are (or can be extended to) Skolem functions for ϕ(X ,Y).
– are easier to synthesise at least for some variables.

Pre-process your input

• For unate variables, constant functions suffice. e.g., if ϕ|y=0 =⇒ ϕ|y=1 then F1 = 1.

• Uniquely defined variables are easy, e.g., Tseitin variables. y1 is uniquely defined in

ϕ(X ,Y) := . . .∧ (y1↔ (x1∨ x2))∧ . . .

These simple checks are surprisingly effective; handle many variables.

31

The Preprocessing Module

Preprocessingϕ(X ,Y) ϕ̂(X ,Y)

• Skolem functions of ϕ̂(X ,Y)

– are (or can be extended to) Skolem functions for ϕ(X ,Y).
– are easier to synthesise at least for some variables.

Pre-process your input

• For unate variables, constant functions suffice. e.g., if ϕ|y=0 =⇒ ϕ|y=1 then F1 = 1.

• Uniquely defined variables are easy, e.g., Tseitin variables. y1 is uniquely defined in

ϕ(X ,Y) := . . .∧ (y1↔ (x1∨ x2))∧ . . .

These simple checks are surprisingly effective; handle many variables.

31

The Preprocessing Module

Preprocessingϕ(X ,Y) ϕ̂(X ,Y)

• Skolem functions of ϕ̂(X ,Y)

– are (or can be extended to) Skolem functions for ϕ(X ,Y).
– are easier to synthesise at least for some variables.

Pre-process your input

• For unate variables, constant functions suffice. e.g., if ϕ|y=0 =⇒ ϕ|y=1 then F1 = 1.

• Uniquely defined variables are easy, e.g., Tseitin variables. y1 is uniquely defined in

ϕ(X ,Y) := . . .∧ (y1↔ (x1∨ x2))∧ . . .

These simple checks are surprisingly effective; handle many variables.

31

The Preprocessing Module

Preprocessingϕ(X ,Y) ϕ̂(X ,Y)

• Skolem functions of ϕ̂(X ,Y)

– are (or can be extended to) Skolem functions for ϕ(X ,Y).
– are easier to synthesise at least for some variables.

Pre-process your input

• For unate variables, constant functions suffice. e.g., if ϕ|y=0 =⇒ ϕ|y=1 then F1 = 1.

• Uniquely defined variables are easy, e.g., Tseitin variables. y1 is uniquely defined in

ϕ(X ,Y) := . . .∧ (y1↔ (x1∨ x2))∧ . . .

These simple checks are surprisingly effective; handle many variables.

31

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

32

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Suppose σ: satisfying assignment of E
– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0

– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Check Module

How do we check if a given function is a correct Skolem function?

Given functions F1, . . .Fm, is ∀X
(
∃Y ϕ(X ,Y) ⇔ ϕ(X ,F(X)

)
?

Can we avoid using a 2-QBF solver and stick to faster SAT-solvers?

Yes, we can! [John et al.’15]
• Propositional error formula:

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))
• Suppose σ: satisfying assignment of E

– ϕ(σ[X],σ[Y]) = 1, σ[Y ′] = F(σ[X]), ϕ(σ[X],σ[(Y ′)]) = 0
– σ is counterexample to the claim that F1, . . .Fm are all correct Skolem functions.

• E unsatisfiable iff F1, . . .Fm are all correct Skolem functions.

33

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].

• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}
– In this case, we don’t need to repair F1.

• Improvement: MaxSAT-based Identification of nice counterexamples
– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].
• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.

• Improvement: MaxSAT-based Identification of nice counterexamples
– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].
• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.
• Improvement: MaxSAT-based Identification of nice counterexamples

– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].
• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.
• Improvement: MaxSAT-based Identification of nice counterexamples

– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2.

Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].
• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.
• Improvement: MaxSAT-based Identification of nice counterexamples

– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

The Repair Module

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0} be a counter-example.

What to Repair?

• Idea: Repair all Fi where σ[yi] 6= σ[y ′i].
• But ϕ(X ,Y) is Boolean Relation, say σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}

– In this case, we don’t need to repair F1.
• Improvement: MaxSAT-based Identification of nice counterexamples

– Hard Clauses ϕ(X ,Y)∧ (X ↔ σ[X]); Soft Clauses (Y ↔ σ[Y ′]).

How to Repair?

• For improved cex σ̂, we want to repair F2. Idea: From σ̂: if x1∧ x2∧¬y1, then set y2 = 1.

• Improvement: Use UNSAT Core of ϕ(X ,Y)∧ x1∧ x2∧¬y1∧¬y2.

34

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods

35

Deep Dive 1: Counter-example guided Skolem function generation

Preprocessing

Input ϕ(X ,Y)

“Guess” Candidate
Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods

35

Machine-learning based guessing of candidate Skolem functions (Manthan)

Preprocessing

Input ϕ(X ,Y)

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods

36

Data Generation
Standing on the Shoulders of Constrained Samplers

ϕ(x1,x2,y1,y2)

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

37

Learn Candidate Functions
Taming the Curse of Abstractions via Learning with Errors

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1 := (¬x1∧¬y1),
p2 := (x1∧ y1)
f1 = if p1 then 1

elif p2 then 1

else 0

38

Data Generation

Potential Strategy: Randomly sample satisfying assignment of ϕ(X ,Y).

Challenge: Multiple valuations of y1,y2 for same valuation of x1,x2.

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

39

Data Generation

Potential Strategy: Randomly sample satisfying assignment of ϕ(X ,Y).

Challenge: Multiple valuations of y1,y2 for same valuation of x1,x2.

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

39

Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Uniform Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2)

F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

– F2(x1,x2) = ¬(x1∧ x2)

F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0

40

Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Uniform Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2)

F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1

– F2(x1,x2) = ¬(x1∧ x2)

F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0

40

Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Uniform Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2) F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1
– F2(x1,x2) = ¬(x1∧ x2) F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0

40

Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Magical Sampler

• Possible Skolem functions:
– F1(x1,x2) = ¬(x1∨ x2) F1(x1,x2) = ¬x1 F1(x1,x2) = ¬x2 F1(x1,x2) = 1
– F2(x1,x2) = ¬(x1∧ x2) F2(x1,x2) = ¬x1 F2(x1,x2) = ¬x2 F2(x1,x2) = 0

41

Weighted Sampling to Rescue

• W : X ∪Y 7→ [0,1]

• The probability of generation of an assignment is proportional to its weight.

W (σ) = ∏
σ(zi)=1

W (zi) ∏
σ(zi)=0

(1−W (zi))

• Example: W (x1) = 0.5 W (x2) = 0.5 W (y1) = 0.9 W (y2) = 0.1
σ1 = {x1 7→ 1,x2 7→ 0,y1 7→ 0,y2 7→ 1}

W (σ1) = 0.5× (1−0.5)× (1−0.9)×0.1 = 0.0025

• Uniform sampling is a special case where all variables are assigned weight of 0.5.

42

Data Generation

Generate Samples with
W (xi) = 0.5
W (yi) = 0.9

Generate Samples with
W (xi) = 0.5
W (yi) = 0.1

Compute Weights qi

Generate Samples with
W (xi) = 0.5
W (yi) = qi

43

Different Sampling Strategies

• Knowledge representation based
techniques

(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)

• Hashing based techniques
(Chakraborty, Meel, and Vardi 2013,
2014,2015)
(Soos, Meel, and Gocht 2020)

• Mutation based techniques
(Dutra, Laeufer, Bachrach, Sen,
2018)

• Markov Chain Monte Carlo based
techniques

(Wei and Selman,2005)
(Kitchen,2010)

• Constraint solver based techniques
(Ermon, Gomes, Sabharwal,
Selman,2012)

• Belief networks based techniques
(Dechter, Kask, Bin, Emek,2002)
(Gogate and Dechter,2006)

44

Machine-learning based guessing of candidate Skolem functions (Manthan)

Preprocessing

Input ϕ(X ,Y)

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes

Simple but effective!

Machine-learning based

Formal methods

45

Learn Candidate Function: Decision Tree Classifier

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

• To learn y2

– Feature set: valuation of x1,x2,y1

– Label: valuation of y2

– Learn decision tree to represent y2 in
terms of x1,x2,y1

• To learn y1

– Feature set: valuation of x1,x2

– Label: valuation of y1

– Learn decision tree to represent y1 in
terms of x1,x2

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

46

Learning Candidate Functions

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1

p21

1 0

1 0

1 0
Can reorder p1,p2

Learning one level decision list

47

Learning Candidate Functions

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1

p21

1 0

1 0

1 0
Can reorder p1,p2

Learning one level decision list

47

What Kind of Learning

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

Learning without Error
Every row is a solution of ϕ(X ,Y)

Learning with Errors
The data is only a subset of solutions.

48

Revisiting the Repair Module: Candidate Identification

E(X ,Y ,Y ′) := ϕ(X ,Y)∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

• σ |= E(X ,Y ,Y ′) be a counterexample to fix.

• Use MaxSAT to find a nicer counterexample σ′

• Repair patches: If x1∧ x2∧¬y1︸ ︷︷ ︸
β={x1,x2,¬y1}

then y2 = 1

49

Repair: Adding Level to Decision List

• Candidates are from one level
decision list:

– Learned decision tree: If p1 then 1,
elif p2 then 1, else 0.

– p1, p2 can be reordered.

• Suppose in repair iterations, we have
learned: If β1 then 1, . . . β2 then 0
.

• β1 and β2 can be reordered.

• From one-level decision list to
two-level decision list.

β1

β2
1

0

p1

p21

1 0

1 0

1 0

01

1 0

Can reorder β1,β2

Can reorder p1,p2

50

Repair: Adding Level to Decision List

• Candidates are from one level
decision list:

– Learned decision tree: If p1 then 1,
elif p2 then 1, else 0.

– p1, p2 can be reordered.

• Suppose in repair iterations, we have
learned: If β1 then 1, . . . β2 then 0
.

• β1 and β2 can be reordered.

• From one-level decision list to
two-level decision list.

β1

β2
1

0 p1

p21

1 0

1 0

1 0

01

1 0

Can reorder β1,β2

Can reorder p1,p2

50

Manthan

ϕ(X ,Y)
X = {x1,x2}
Y = {y1,y2}

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

Check Satisfiability
of E(X ,Y ,Y ′)

Gσ(X ,Y)

Return F

Data Generation Learn Candidates

Verify Candidates

SAT, σ

UNSATUNSAT Core-based Repair

Preprocessing

Input ϕ(X ,Y)

Data Generation
Guess Candidate

Functions

Check Repair

Output F

No

Yes

51

Deep Dive 2
Knowledge Compilation for Boolean Functional Synthesis

52

Deep Dive 2: Knowledge Representations and Compilation for Synthesis

• The Guess-check-repair approach was input-agnostic.

• Suffers from worst-case exponential blowup (unavoidable due to hardness results).

This leads us to ask
• Are there special properties of input specification which guarantee provably fast/small

solutions?

• Can we develop new algorithms exploiting these properties?

Leads us to the rich area of Knowledge representations and Knowledge compilation.

53

Deep Dive 2: Knowledge Representations and Compilation for Synthesis

• The Guess-check-repair approach was input-agnostic.

• Suffers from worst-case exponential blowup (unavoidable due to hardness results).

This leads us to ask
• Are there special properties of input specification which guarantee provably fast/small

solutions?

• Can we develop new algorithms exploiting these properties?

Leads us to the rich area of Knowledge representations and Knowledge compilation.

53

Deep Dive 2: Knowledge Representations and Compilation for Synthesis

• The Guess-check-repair approach was input-agnostic.

• Suffers from worst-case exponential blowup (unavoidable due to hardness results).

This leads us to ask
• Are there special properties of input specification which guarantee provably fast/small

solutions?

• Can we develop new algorithms exploiting these properties?

Leads us to the rich area of Knowledge representations and Knowledge compilation.

53

Deep Dive 2: Knowledge Representations and Compilation for Synthesis

Preprocessing

Input ϕ(X ,Y)

Compiler

Polytime Engine

Output F

ϕ̂(X ,Y)

The question we will address in this deep dive...

What is ϕ̂(X ,Y), i.e., representation of input s.t., Polytime Engine suffices for synthesis?

54

Deep Dive 2: Knowledge Representations and Compilation for Synthesis

Preprocessing

Input ϕ(X ,Y)

Compiler

Polytime Engine

Output F

ϕ̂(X ,Y)

The question we will address in this deep dive...

What is ϕ̂(X ,Y), i.e., representation of input s.t., Polytime Engine suffices for synthesis?
54

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1):

ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Let’s start with a simple case

What if there is only one output, i.e., |Y |= 1.

1-output synthesis is easy: We don’t even need to change the Spec!

Spec ϕ(X ,y1): ϕ(X ,1) is a Skolem function for y1 in ϕ(X ,y1)

For any X , we have ∃y1ϕ(X ,y1) ⇔ ϕ(X ,1)∨ϕ(X ,0) ⇔ ϕ(X ,ϕ(X ,1)).

Corollary

• ¬ϕ(X ,0) is also a correct Skolem function.

• Any interpolant between these two is also a correct Skolem function. Jiang ’09, Trivedi ’03.

55

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis

• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis
• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis
• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis
• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis
• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Multi-output synthesis and Existential quantification

Multi-output synthesis

Spec ϕ(X ,y1, . . .ym): Transform to 1-output synthesis
• Construct new spec ϕ′(X ,ym)≡ ∃y1 . . .ym−1 ϕ

– Inputs X , output ym

• Synthesize Fm(X) for ym from ϕ′

• Construct new spec ϕ′′(X ,ym−1,ym)≡ ∃y1 . . .ym−2 ϕ

– Inputs X , ym; output ym−1

• Synthesize Fm−1(X ,ym) for ym−1; substitute Fm(X) for ym

• Repeat ...

So, to compute Skolem functions, just need to efficiently compute

∃y1 . . .yi ϕ(X ,y1, . . .ym) ∀i ∈ {1, . . .m}

56

Existential Quantification with NNF circuits

ϕ(X ,Y)

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y)|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Potential doubling of
size

57

Existential Quantification with NNF circuits

ϕ(X ,Y)

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1

ϕ(X ,Y)|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Potential doubling of
size

57

Existential Quantification with NNF circuits

ϕ(X ,Y)

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y)|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Potential doubling of
size

57

Existential Quantification with NNF circuits

ϕ(X ,Y)

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y)|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Potential doubling of
size

57

Existential Quantification with NNF circuits

ϕ(X ,Y)

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

|y1=1
ϕ(X ,Y)|y1=0

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Potential doubling of
size

57

Over-approximating ∃y1 ϕ(X ,Y) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58

Over-approximating ∃y1 ϕ(X ,Y) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58

Over-approximating ∃y1 ϕ(X ,Y) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

58

Over-approximating ∃y1 ϕ(X ,Y) Sans Doubling

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

Always holds

58

Can We Represent Quantification Exactly sans Blow-up?

ϕ(X ,y1, . . .ym)|y1=1

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷0

ϕ(X ,y1, . . .ym)|y1=0

NNF
Circuit of

∧ and ∨ gates

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷0 ︷︸︸︷1

ϕ̂(X ,y1,y1,y2,y3, . . .ym)|y1=y1=1

NNF
Circuit

monotone
in y1 and y1

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸︷︷︸
X , ¬X

︷︸︸︷1 ︷︸︸︷1

∨

∃y1 ϕ(X ,Y)

When does this hold???

59

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1.

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
I (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
I (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• For some values for other outputs and inputs, ϕ̂≡ y1∧ y1.

y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
I (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• For some values for other outputs and inputs, ϕ̂≡ y1∧ y1.

y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

So, what should we avoid?

• For some values for the other variables, we have ϕ̂⇔ y1∧ y1.

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
I (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• For some values for other outputs and inputs, ϕ̂≡ y1∧ y1.

y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

So, what should we avoid?

• For some values for the other variables, we have ϕ̂⇔ y1∧ y1.

• If we can avoid it, we get ∃y1ϕ(X ,Y) ⇔ ϕ̂ |y1=1,y1=1

60

The positive form and existential quantification

Take first output: ∃y1ϕ(X ,Y) ⇒ ϕ̂ |y1=1,y1=1. When does the reverse implication hold?
Let’s ask the opposite.

When do we have ∃y1ϕ(X ,Y) 6⇐ ϕ̂ |y1=1,y1=1 ?

• Exactly when
– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X ,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

I ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
I ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
I (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• For some values for other outputs and inputs, ϕ̂≡ y1∧ y1.

y1 y1 ϕ̂

1 1 1
1 0 0
0 1 0
0 0 0

So, what should we avoid?

• For some values for the other variables, we have ϕ̂⇔ y1∧ y1.

• If we can avoid it, we get ∃y1ϕ(X ,Y) ⇔ ϕ̂ |y1=1,y1=1

• Can generalize this to multiple outputs...

60

A simple yet special Normal Form

• Weak Decomposable Negation Normal Form (wDNNF)∗: Forbidden structure/syntax

ϕ(X ,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1

· · · · · ·︸ ︷︷ ︸
yk

· · ·︸ ︷︷ ︸
¬yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

∧

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18.
61

A simple yet special Normal Form

• Weak Decomposable Negation Normal Form (wDNNF)∗: Forbidden structure/syntax

• Generalizes DNNF†, well-studied in KR community.

ϕ(X ,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1

· · · · · ·︸ ︷︷ ︸
yk

· · ·︸ ︷︷ ︸
¬yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

∧

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18.
†Adnan Darwiche, J. ACM ’01

61

A simple yet special Normal Form

• Weak Decomposable Negation Normal Form (wDNNF)∗: Forbidden structure/syntax

• Generalizes DNNF†, well-studied in KR community.

ϕ(X ,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
¬y1

· · · · · ·︸ ︷︷ ︸
yk

· · ·︸ ︷︷ ︸
¬yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

∧

∗S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah, CAV’18.
†Adnan Darwiche, J. ACM ’01

61

A semantic Normal Form

• Synthesis Negation Normal Form (SynNNF)∗: Forbidden semantics

ϕ̂(X ,Y) 6⇔ (yk ∧ yk)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸
yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

All 1’s Every possible assignment

∗S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
62

A semantic Normal Form

• Synthesis Negation Normal Form (SynNNF)∗: Forbidden semantics

ϕ̂(X ,Y) 6⇔ (yk ∧ yk)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸
yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

All 1’s Every possible assignment

∗S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
62

A semantic Normal Form

• Synthesis Negation Normal Form (SynNNF)∗: Forbidden semantics

ϕ̂(X ,Y) 6⇔ (yk ∧ yk)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸
yk

· · · · · ·︸︷︷︸yn

· · ·︸︷︷︸
¬yn

· · · · · ·︸ ︷︷ ︸
X , ¬X

All 1’s Every possible assignment

∗S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah, FMCAD’19.
62

SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
63

SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
63

SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
63

SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
63

SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X ,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)∗

– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.

∗Adnan Darwiche, J. App. Non Class. Logics’01
63

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF

, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?

• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.

What more can we do?
• Does there exists a necessary and sufficient condition for efficient synthesis?

• Subset-And-Unrealizable Normal Form (SAUNF) P. Shah, A. Bansal, S. Akshay, S. Chakraborty, LICS’21.

64

Compilation to SynNNF and SAUNF

• What about general classes of specs?
– CNF specs: NNF circuits don’t always admit efficient synthesis

Compiling CNF to SynNNF [Akshay et al. FMCAD’19.]
• Algorithm for compilation: uses ideas from dDNNF-compilation and more

• Prototype implementation C2Syn
• Worst-case exponential-time and space

– Unavoidable due to hardness results

Compiling CNF to SAUNF [Shah et al. LICS’21.]
• Algorithm for compilation

• Future work: Implementation and comparisons!

65

Compilation to SynNNF and SAUNF

• What about general classes of specs?
– CNF specs: NNF circuits don’t always admit efficient synthesis

Compiling CNF to SynNNF [Akshay et al. FMCAD’19.]
• Algorithm for compilation: uses ideas from dDNNF-compilation and more

• Prototype implementation C2Syn
• Worst-case exponential-time and space

– Unavoidable due to hardness results

Compiling CNF to SAUNF [Shah et al. LICS’21.]
• Algorithm for compilation

• Future work: Implementation and comparisons!

65

Compilation to SynNNF and SAUNF

• What about general classes of specs?
– CNF specs: NNF circuits don’t always admit efficient synthesis

Compiling CNF to SynNNF [Akshay et al. FMCAD’19.]
• Algorithm for compilation: uses ideas from dDNNF-compilation and more

• Prototype implementation C2Syn
• Worst-case exponential-time and space

– Unavoidable due to hardness results

Compiling CNF to SAUNF [Shah et al. LICS’21.]
• Algorithm for compilation

• Future work: Implementation and comparisons!

65

Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward

66

Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y)

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs

An SMT formula

Qdimacs formula Synthesized Skolem function

67

Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y)

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs
An SMT formula

Qdimacs formula Synthesized Skolem function

67

Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y)

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs
An SMT formula

Qdimacs formula

Synthesized Skolem function

67

Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y)

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs
An SMT formula

Qdimacs formula Synthesized Skolem function

67

Outline

1 Application Domains

2 Theoretical Hardness and Practical Algorithms

3 Deep Dives

4 Tool Demo

5 Conclusion and the Way Forward

68

Summary

• Functional Synthesis is a fundamental problem with wide variety of applications
– program synthesis, games and planning, circuit repair

• Long history of work that has sought to push the scalability envelope
• An exciting and diverse set of approaches

– Guess, check, and repair
– Knowledge representation

• Promise of scalability: Out of 609 benchmarks

2018 247 solved
2019 280 solved
2020 356 solved
2021 509 solved

69

Where do we go from here?

1. Benchmarks

2. Notion of Quality

3. Beyond Single Functions

4. Beyond Propositional Logic

70

Future Directions I: Benchmarks

Promise of scalability: Out of 609 benchmarks

2018 SOTA 247 solved

2019 SOTA 280 solved

2020 SOTA 356 solved

2021 SOTA 509 solved

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more
investment in foundational tools, while improvements in the foundational tools drive further
applications. Around and around.

71

Future Directions II: Search for Optimal Functions

• The current formulation allows the solver to find an arbitrary functions

• Opportunity to formalize the notion of quality

• Smaller size?

• Uses gates of particular type?

• Readable?

72

Future Directions III: Beyond Single Functions

• Enumeration of functions: Knowledge compilation

• Uniform sampling of functions: randomized strategies

• Counting of functions

73

Future Directions IV: Beyond Propositional Logic

• Past twenty years: Development of solvers with satisfiability modulo theory solvers
– Capable of handling theories such as string, bitvectors, linear real arithmetic

• Lifting synthesis techniques to SMT
– Knowledge compilation
– Machine Learning techniques for SMT learning
– Repair techniques

74

Questions?

Promise of scalability: Out of 609 benchmarks

2018 SOTA 247 solved

2019 SOTA 280 solved

2020 SOTA 356 solved

2021 SOTA 509 solved

The Future:

1. Benchmarks

2. Notion of Quality

3. Beyond Single Functions

4. Beyond Propositional Logic

75

	Application Domains
	Theoretical Hardness and Practical Algorithms
	Deep Dives
	Tool Demo
	Conclusion and the Way Forward

