

Program Synthesis as Dependency Quantified Formula Modulo Theory

Program Synthesis

Input: A specification as logic formula, underlying theory (\mathbb{T}) , and a set of typed function symbols to synthesize.

Objective: Synthesize the function that provably satisfies the specifications.

 $f_1(x_1, x_2) \ge x_1$ and $f_1(x_1, x_2) \ge x_2$ and $(f_1(x_1, x_2) == x_1 \text{ or }$ $f_1(x_1, x_2) == x_2)$

 $f_1(arg_1, arg_2)$ { If $(arg_1 \ge arg_2)$ Return arg_1 Else Return arg_2 }

Synthesize a function f_1 that satisfies the specification.

Program Synthesis: Diverse Approaches

- (Reynolds et al. 2015, 2016, 2019)• On top of SAT/SMT solver
- Using grammar for Syntax Guided Synthesis (SyGuS) (Alur et al. 2013)
- Enumeration based CEGIS synthesizers (Alur et al. 2013,2017, Udupa et al. 2013)
- Using syntactic templates (Solar-Lezama et al. 2005,2008)

Dependency Quantified Formula $(DQF(\mathbb{T}))$

• Given a quantified formula ϕ in theory \mathbb{T} with universal (\forall) and existential (\exists) quantifiers.

$$\phi := \forall x_1, \ldots, x_n \exists^{H_1} y_1 \ldots \exists^{H_m} y_m \varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$$

- Y variables have explicit dependencies. Each $H_i \subseteq \{x_1, \ldots, x_n\}$.
- A $DQF(\mathbb{T})$ formula is True, if there exists function a vector $\boldsymbol{g}: \langle g_1(H_1), \ldots, g_m(H_m) \rangle$ such that $\varphi(x_1, \ldots, x_n, g_1(H_1), \ldots, g_m(H_m))$ is a tautology.
- When \mathbb{T} =Boolean, DQF(\mathbb{T}) formula is Dependency Quantified Boolean Formulas (DQBF).

DQBF Solving: Diverse Approaches

- Lifting CDCL for DQBF (Frohlich et al., 2012)
- (Bubeck et al. 2006, Gitina et al. 2013, 2015, Sic 2020) • Variable expansion based solvers
- (Tentrup et al., 2019) • Clausal abstraction based
- Definition extraction based (Reichl et al., 2021)

Priyanka Golia^{1,2} Subhajit Roy¹ Kuldeep S. $Meel^2$

