
Program Synthesis as Dependency Quantified Formula Modulo Theory
Priyanka Golia1,2 Subhajit Roy1 Kuldeep S. Meel2

1Indian Institute of Technology Kanpur, India 2National University of Singapore, Singapore

Program Synthesis

Input: A specification as logic formula, underlying theory (T), and a set of
typed function symbols to synthesize.

Objective: Synthesize the function that provably satisfies the specifications.

f1(x1, x2) ≥ x1 and
f1(x1, x2) ≥ x2 and
(f1(x1, x2) == x1 or
f1(x1, x2) == x2)

Synthesize a function f1
that satisfies the specification.

Synthesizer

f1(arg1, arg2) {
If (arg1 ≥ arg2)

Return arg1
Else

Return arg2 }

Program Synthesis: Diverse Approaches

•On top of SAT/SMT solver (Reynolds et al. 2015,2016,2019)
• Using grammar for Syntax Guided Synthesis (SyGuS) (Alur et al. 2013)
• Enumeration based CEGIS synthesizers (Alur et al. 2013,2017, Udupa et al. 2013)
• Using syntactic templates (Solar-Lezama et al. 2005,2008)

Dependency Quantified Formula (DQF (T))

•Given a quantified formula φ in theory T with universal (∀) and existential
(∃) quantifiers.

φ := ∀x1, . . . , xn ∃H1y1 . . . ∃Hmym ϕ(x1, . . . , xn, y1, . . . , ym)

• Y variables have explicit dependencies. Each Hi ⊆ {x1, . . . , xn}.

•A DQF (T) formula is True, if there exists function a vector
g : 〈g1(H1), . . . , gm(Hm)〉 such that ϕ(x1, . . . , xn, g1(H1), . . . , gm(Hm)) is a
tautology.

•When T=Boolean, DQF(T) formula is Dependency Quantified Boolean
Formulas (DQBF).

DQBF Solving: Diverse Approaches

• Lifting CDCL for DQBF (Frohlich et al., 2012)
• Variable expansion based solvers (Bubeck et al. 2006, Gitina et al. 2013, 2015, Sic 2020)
• Clausal abstraction based (Tentrup et al., 2019)
• Definition extraction based (Reichl et al., 2021)

Our Contributions
•Established a connection between T-constrained synthesis and DQF(T)— reduction of program synthesis to DQF(T).

•Reduction of DQF(BV) to DQBF — allows us to simply plug-in the state of the art DQBF solvers for BV-constrained synthesis.

Central Idea
• Introduce function callsign many new variables, and replace function callsign by the corresponding variable in the specification.

•Construct explicit dependencies for the introduced variables as per the function callsign.

f1(x1, x2) ≥ x1 and
f1(x1, x2) ≥ x2 and
(f1(x1, x2) == x1 or
f1(x1, x2) == x2)

Program Synthesis Instance:
Synthesize a function f1
that satisfies the specification.

Replace f1(x1, x2) callsign
by a new variable, y1

c1 : y1 ≥ x1 and
c2 : y1 ≥ x2 and
c3 : (y1 == x1 or
y1 == x2)

DQF (T) instance:
∀ x1, x2 ∃H1:{x1,x2} y1
c1 ∧ c2 ∧ c3

•Ask DQF(T) solver to synthesize function for y1 in terms of x1 and x2.

•When T = Bit Vector: DQF(T) can be reduced to DQBF with the help of bitblasting.

Experimental Results
•T = Bit Vector. Benchmarks: 645 instances from SyGuS
competition. Timeout: 900 seconds

•The number of instances solved by virtual best SyGuS and
DQBF solver.

SyGuS Solver DQBF Solver
Total: 645 513 610

Tools Used in the Evaluation.

SyGuS Solvers DQBF Solvers
CVC4,ESolver CADET, DCAQE

EUSolver,DryadSynth Manthan, DepQBF
Stochpp DQBDD

Key Takeaways

•We can use state-of-the-art DQBF solvers for Bit Vector
constrained synthesis.

•DQBF solvers were able to solve more than 100 instances that
the SyGuS solves could not solve.

https://github.com/meelgroup/dequs

https://github.com/meelgroup/dequs

