
6mM+iBQM�H avMi?2bBb pB� 6Q`K�H J2i?Q/b �M/
J�+?BM2 G2�`MBM;

� i?2bBb bm#KBii2/
BM T�`iB�H 7mH}HHK2Mi Q7 i?2 `2[mB`2K2Mib

7Q` i?2 /2;`22 Q7

.Q+iQ` Q7 S?BHQbQT?v
#v

S`Bv�MF� :QHB�
RdRRRkdy

iQ i?2

.2T�`iK2Mi Q7 *QKTmi2` a+B2M+2 � 1M;BM22`BM;
AM/B�M AMbiBimi2 Q7 h2+?MQHQ;v- E�MTm`

�M/

a+?QQH Q7 *QKTmiBM;
L�iBQM�H lMBp2`bBiv Q7 aBM;�TQ`2

B

BB

.1*G�_�hAPL

h?Bb Bb iQ +2`iB7v i?�i i?2 i?2bBb iBiH2/ 6mM+iBQM�H avMi?2bBb pB� 6Q`K�H J2i?@

Q/b �M/ J�+?BM2 G2�`MBM; ?�b #22M �mi?Q`2/ #v K2X Ai T`2b2Mib i?2 `2b2�`+?

+QM/m+i2/ #v K2 mM/2` i?2 bmT2`pBbBQM Q7 S`Q7X am#?�DBi _Qv UAAhEV �M/ S`Q7X

EmH/22T aX J22H ULlaVX hQ i?2 #2bi Q7 Kv FMQrH2/;2- Bi Bb �M Q`B;BM�H rQ`F- #Qi? BM

i2`Kb Q7 `2b2�`+? +QMi2Mi �M/ M�``�iBp2- �M/ ?�b MQi #22M bm#KBii2/ 2Hb2r?2`2- BM

T�`i Q` BM 7mHH- 7Q` � /2;`22X 6m`i?2`- /m2 +`2/Bi ?�b #22M �ii`B#mi2/ iQ i?2 `2H2p�Mi

bi�i2@Q7@i?2@�`i �M/ +QHH�#Q`�iBQMb UB7 �MvV rBi? �TT`QT`B�i2 +Bi�iBQMb �M/ �+FMQrH@

2/;2K2Mib- BM HBM2 rBi? 2bi�#HBb?2/ MQ`Kb �M/ T`�+iB+2bX

S`Bv�MF� :QHB�

S`Q;`�K, .Q+iQ` Q7 S?BHQbQT?v

.2T�`iK2Mi Q7 *QKTmi2` a+B2M+2 � 1M;BM22`BM;-

AM/B�M AMbiBimi2 Q7 h2+?MQHQ;v E�MTm`- AM/B�

�M/

a+?QQH Q7 *QKTmiBM;-

L�iBQM�H lMBp2`bBiv Q7 aBM;�TQ`2- aBM;�TQ`2

�m;mbi Re- kykj

iv

SYNOPSIS

Name of student: Priyanka Golia Roll no: 17111270

Degree for which submitted: Doctor of Philosophy

Department: Computer Science & Engineering

Thesis title:

Functional Synthesis via Formal Methods and Machine Learning

Name of Thesis Supervisors:

Prof. Subhajit Roy

Department of Computer Science &

Engineering

IITK, India

Prof. Kuldeep S. Meel

School of Computing

NUS, Singapore

Month and year of thesis submission: August 16, 2023

Functional synthesis, a fundamental task in computer science, involves automatically

generating functions that meet specific user requirements. Its practical applications

span a wide range, from automatically repairing programs to cryptanalysis. While

theoretical investigations have shown that certain instances of functional synthesis

can be exceptionally time-consuming, the need for practical usability has spurred the

development of algorithms that showcase remarkable scalability. Despite these sig-

nificant strides, practical challenges persist, and there are still real-world situations

where current methods encounter limitations. This highlights the need for contin-

ued research and innovation in intriguing field of functional synthesis. This thesis

takes a comprehensive perspective on functional synthesis, examining it through the

lens of recent advancements in machine learning and formal methods. By leverag-

v

ing the power of these cutting-edge technologies, we aim to enhance the process of

automatically generating functions that meet the given formal requirements.

The central focus of the thesis lies in presenting innovative approaches to en-

hance scalability in functional synthesis and its more complex variants. Inspired

by recent progress in machine learning and formal methods, the thesis reimagines

functional synthesis as a classification problem. It leverages cutting-edge techniques

such as constrained sampling for data generation and automated reasoning for proof-

guided repair. Therefore, the key components or ingredients that constitute these

advancements are constrained sampling for data generation, machine learning for

learning candidate functions, and formal methods for repairing and verifying these

candidates. By combining these ingredients, the thesis aims to achieve remarkable

progress in the field of functional synthesis and tackle its scalability challenges.

The thesis presents Manthan, a data-driven approach to functional synthesis that

capitalizes on the aforementioned key ingredients. By introducing Manthan, the

scalability of functional synthesis has witnessed a significant boost, surpassing the

capabilities of previous state-of-the-art methods. Notably, Manthan demonstrates

the successful handling of 40% more instances, signifying a remarkable advancement

in the field. One of the pivotal contributions of the thesis is the exploration of vari-

ants of functional synthesis that are known to be more harder from the theoretical

complexity view, particularly those involving explicit dependencies. These explicit

dependencies impart a higher degree of descriptive power and exhibit applications in

diverse domains, such as circuit repair, controller synthesis, and equivalence check-

ing. The designed approach has pushed the boundaries of synthesis with explicit

dependencies, effectively addressing instances that had previously posed challenges

for state-of-the-art tools.

Our proposed approaches showed impressive scalability, which inspired us to

explore their applications in various fields. One area we focused on in this thesis

is program synthesis, a fundamental problem in computer science. In program

synthesis, the goal is to automatically synthesize a program that fulfills given user

vi

requirements. In recent developments, these requirements include both syntactic

(grammar-related) and semantic aspects. In the thesis, we specifically looked at the

role of syntactic requirements (grammar) in program synthesis, and examined the

feasibility of synthesis techniques that do not rely on grammatical restrictions, which

we termed Theory-constrained synthesis, or T-constrained synthesis. The thesis

proposed a reduction of T-constrained synthesis to functional synthesis with explicit

dependencies when there are no syntactic requirements. This means we can do

program synthesis without the need for grammar via functional synthesis. As a result

of this reduction, our proposed method, Manthan, has become the state-of-the-art

approach for synthesizing programs when dealing with bit vectors as the underlying

theory. The proposed advancement opens up new possibilities for program synthesis

and expands the scope of functional synthesis to different application areas.

Our proposed approaches, which combines formal methods and machine learn-

ing, offers scalability and flexibility, making it applicable to various domains and

applications. Another area where our approach shows great promise is in real-world

scenarios that involve both hard constraints (which must be satisfied) and soft con-

straints (which should be satisfied to the best extent possible). The thesis presents

a framework for synthesizing systems that not only guarantee the fulfillment of hard

constraints but also achieve a predefined level of goodness for soft constraints,which

makes a significant advancement in making functional synthesis more practical and

valuable in real-world applications.

vii

List of Publications

This thesis is based on the following publications.

1. Manthan: A data-driven approach for Boolean function synthesis

Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel.

In Proceedings of International Conference on Computer-Aided Verification

(CAV), 2020.

2. Engineering an efficient Boolean functional synthesis engine.

Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, and Kuldeep S. Meel.

In Proceedings of International Conference On Computer Aided Design (ICCAD),

2021.

Best Paper Award Nomination.

3. Program synthesis as dependency quantified formula modulo theory.

Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel.

In Proceedings of International Joint Conference on Artificial Intelligence

(IJCAI), 2021.

4. Synthesis with explicit dependencies.

Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel.

In Proceedings of Design, Automation and Test in Europe (DATE), 2023.

Best Paper Award Nomination.

5. Good enough synthesis with hard constraints.

Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel.

Under Review.

To my grandparents, parents

and

members of my family

Acknowledgements

I am deeply grateful to my advisors, Prof. Kuldeep S. Meel and Prof. Subhajit

Roy, for their invaluable guidance and support throughout my Ph.D. journey. Their

unwavering dedication, support, and belief in hard work and incremental progress

have been invaluable to my personal and professional growth. Their determination

and perseverance in problem-solving has been a valuable lesson in research for me.

Thank you Subhajit for his patience and willingness to listen to my half-baked

ideas. His guidance and support have been instrumental in helping me grow.

I am grateful to Kuldeep for his kind and supportive guidance that has helped me

to grow not only as a researcher, but also as a person. Our engaging discussions on a

variety of topics of life in general have played a crucial role in my transformation from

an under-confident and shy individual to a more confident person. I am thankful to

Kuldeep for his mentorship and encouragement during my academic job search.

Kuldeep and Subhajit, thank you for everything; your guidance and understanding

have helped me to navigate through difficult moments and provided me with the

motivation and encouragement I needed to keep going. I am truly thankful to have

had such a supportive and understanding mentors/advisors by my side.

I am thankful to Akshay, Supratik, Shetal for their guidance, support and dis-

cussions about functional synthesis. I am grateful to Diptarka for being a friend

and mentor at times and for listening to all of my complaints about life and work. I

have been fortunate to collaborate with Sourav Chakraborty, Brendan Juba, Mate

Soos, and Friedrich Slivovsky.

I would also like to express my gratitude to my friends at IITK and NUS. Amit,

x

Ashish, Avideep, Bhargav, Chetan, Mahesh, Muzafar, Pranjal, Pranav, Prateek,

Rahul, Sumanta and Vinay, for being there throughout my Ph.D. journey at IITK.

Yash, Teo, Aashish, Soundarya, and Umair, thank you for the weekend parties and

impromptu plans that helped me survive my Ph.D. Thank you Awanish, Prantik,

Pankaj, Nitesh, Sujit, Sumit for helping me improve by providing detailed feedback

on my research. At NUS, I met my new family, the “MeelGroup” ; Thank you to

Yash, Teo, Jiong, Arijit, Bishwa, Tim, Shubham, Mahi, Anna, Gunjan, and Pang

for listening to my talk preparations and giving me constructive feedback on every

aspect of my Ph.D. research. From my undergraduate days until now, I am incredibly

grateful for my pillars of support: Anurag, Bidesh, Mahantesh, and Mayank. Your

presence in my life has been a constant source of strength and encouragement.

I lost my grandparents (Nana ji R.L. Inaniya and Dada ji M.L. Golia) during

my Ph.D. journey, but I know how proud they must be of me today. Nana ji, Dada

ji, thank you for fighting the odds and allowing me to chase my dreams. I want

to thank all my family members: B. R. Ranwa and Para Devi (grandparents-in-

law), Sugni Devi and Tulsi Devi (grandparents) for their support throughout. I am

eternally grateful to my parents, Preshita and Parsa Ram Golia, and my parents-in-

law, Indra and Ramkishan Ranwa, for their unwavering support and encouragement

throughout this journey. Their belief in me and their constant encouragement have

meant the world to me and have been a major driving force behind my success on

completing this thesis. Thank you Maa, Papa! I also want to thank my brother,

Vibhu, his presence in my life has brought me so much joy and comfort. Thank you

Amit Bhaiya, Praveen, Anshu, Tanu, Shubhu, Adi, Piu, Mohi and Urvi for their

constant love and support.

Last but not the least, I want to thank my partner, Rajendra, for his patience,

understanding, and support throughout this process. I am so grateful to have him

by my side through ups and downs. Thank you Raj for tolerating me!

Papa, Mummy, Raj, we did it! Thank you all for being there for me every step

of the way and for being such an important part of my life.

Contents

Acknowledgements ix

List of Tables xiv

List of Figures xv

I Prologue 1

1 Introduction 2

1.1 Functional Synthesis . 3

1.2 Contributions . 7

1.2.1 A Data-Driven Approach . 7

1.2.2 Synthesizing Functions with Explicit Dependencies 9

1.2.3 Program Synthesis via Functional Synthesis 10

1.2.4 Beyond All-or-Nothing Approach 11

1.3 Tools . 12

1.4 Outline . 13

2 Preliminaries and Related Work 14

2.1 Boolean Formulas and Beyond . 14

2.2 Skolem Synthesis . 16

2.3 Henkin Synthesis . 18

2.4 Program Synthesis . 20

2.5 Satisficing Synthesis . 22

xii

II Ingredients for Functional Synthesis 24

3 Preprocessing 26

3.1 Finding Unates . 26

3.2 Extracting Unique Functions . 28

4 Data Generation 32

4.1 What kind of a Sampling Strategy? 33

4.2 Adaptative Weighted Sampling Strategy 34

5 Candidate Learning 37

5.1 Learning via Binary Classification . 38

5.2 Learning via Multi Classification . 41

6 Verification and Repairing of Candidates 48

6.1 Verification . 48

6.2 Repair of Candidates . 49

6.2.1 Fault Localization . 50

6.2.2 Repair Synthesis . 52

III Recipe and Results for Functional Synthesis 58

7 Skolem Synthesis 60

7.1 Approach . 61

7.2 Experimental Results . 65

8 Henkin Synthesis 83

8.1 Approach . 84

8.2 Experimental Results . 92

IV Generalization from Functional Synthesis 97

9 Program Synthesis as Dependency Quantified Formulas 99

xiii

9.1 Reduction of T-Constrained Synthesis to DQF(T) 101

9.1.1 When T is Bitvector (BV): 104

9.2 Experimental Results . 105

10 Satisficing Synthesis 110

10.1 Overview . 112

10.2 Approach . 115

10.3 Experimental Results . 122

V Conclusion 128

11 Concluding Remarks 130

12 Future Directions 132

References 135

List of Tables

4.1 Data Generation: An example of uniform sampling 33

7.1 Skolem Synthesis: No. of benchmarks solved by different tools. 68

7.3 Skolem Synthesis: Manthan with different samplers. 70

7.5 Skolem synthesis: Pairwise comparison of Manthan2 with Manthan . . 77

7.6 Skolem Synthesis: Performance Summary over 609 benchmarks . . . 77

7.8 Skolem Synthesis: # of benchmarks with different size unique functions. 79

8.1 Henkin synthesis: Manthan3 vs other state-of-the-art tools. 95

9.1 Program synthesis as DQF(T): Tools used in evaluation. 106

9.2 Program synthesis as DQF(T): Benchmarks solved. 107

9.3 Program synthesis as DQF(T): Top tools in different categories. . . . 108

9.4 Program synthesis as DQF(T): QBF instances solved. 109

10.1 Satisificing synthesis: φH(X,Y) as formula and φS(X,Y) as data. . . 124

10.2 Satisificing synthesis: φH(X,Y) and φS(X,Y) as formulas. 126

10.3 Satisificing synthesis: φH(X,Y) and φS(X,Y) as data. 127

List of Figures

1.1 Application of functional synthesis: Circuit repair. 5

1.2 Overview of data-driven approach for functional synthesis. 8

4.1 Data Generation: An adaptive weighted sampling strategy. 35

5.1 An Example for learning candidates via binary classification. 39

5.2 An Example for learning candidates via multi classification. 46

6.1 Repair of candidates: Moving from decision trees to decision list. . . 54

7.1 Manthan for Skolem synthesis. 60

7.2 Skolem synthesis by Manthan example: Data generation 64

7.3 Skolem synthesis by Manthan example: Learning candidates 64

7.4 Skolem Synthesis: Manthan versus competing tools. 68

7.5 Skolem Synthesis: Heatmap for Manthan with # of instances solved. 71

7.6 Skolem synthesis: Time for different phases of Manthan. 72

7.7 Skolem synthesis: Impact of self-substitution on pdtpmsmiim. 74

7.8 Skolem synthesis: Impact of self-substitution on pdtpmsmiim-all-bit. . 74

7.9 Skolem synthesis: Manthan2 vis-a-vis state-of-the-art synthesis tools. 77

7.10 Skolem Synthesis: # of benchmarks by % ratio of unique variables. . 79

7.11 Skolem synthesis: Multi-classification and LexMaxSAT turned off. . . 81

7.12 Skolem synthesis: Multi-classification and LexMaxSAT turned on. . . 82

8.1 Henkin synthesis by Manthan3 example: Data generations. 91

8.2 Henkin synthesis by Manthan3 example: Learning candidate for y1. . 91

xvi

8.3 Henkin synthesis by Manthan3 example: Learning candidate for y2. . 91

8.4 Henkin synthesis by Manthan3 example: Learning candidate for y3. . 91

8.5 Henkin synthesis: VBS with/without Manthan3. 94

8.6 Henkin synthesis: Manthan3 vs. VBS(HQS2+Pedant). 95

8.7 Henkin synthesis: Manthan3 vs.HQS2. 96

8.8 Henkin synthesis: Manthan3 vs. Pedant. 96

8.9 Henkin synthesis: Pedant vs.HQS2. 96

10.1 HSsynth for satisficing synthesis: . 113

10.2 Satisificing synthesis: Satisficing measure of synthesized F (X). 127

Part I

Prologue

1

Chapter 1

Introduction

Imagine a world where complex surgeries are performed with flawless precision

by robotic surgeons, self-driving cars effortlessly navigate through busy streets, and

smart homes anticipate our needs, creating a seamless and convenient living en-

vironment. This futuristic vision is gradually becoming a reality as sophisticated

technologies continue to integrate into our daily lives. In this rapidly evolving world,

the reliability and trustworthiness of automated systems play a vital role. We rely

on these systems to make critical decisions, handle sensitive tasks, and enhance our

overall quality of life. Therefore, the question arises: How can we ensure that these

automated systems are trustworthy? How can we trust on the automated system

that they will work as intended in all possible scenarios they might face?

This is where the quest for dependable systems begins. Trust is sought through

two prominent approaches: (i) certification, which involves subjecting these systems

to extensive testing and formal verification. Certification ensures that the automated

systems fulfil their promises by subjecting them to rigorous tests and verification

processes, guaranteeing that the system meets strict standards of accuracy and

reliability, (ii) the second approach takes a different path. Instead of certifying

the system’s performance, the approach focuses on constructing systems that are

inherently reliable and accurate, that is building the automated system in such a

way that their correct behavior is guaranteed by design.

3

This thesis embarks on a journey to explore the latter approach, which we refer

to as “correct by construction.” In particular, the thesis is about automated syn-

thesis of a correct-by-construction system from the given specifications. Automated

synthesis is a technique that utilizes formal specifications to automatically generate

systems, such as functions, programs, or circuits, that can be proven to satisfy the

given requirements. While automated synthesis is a well-studied area in computer

science, recent years have seen significant advancements in artificial intelligence, for-

mal methods, and automated reasoning. These advancements develop and deploy

mathematically-rigorous and algorithmically-efficient solutions to verify and design

the correct behavior of systems.

This thesis takes a comprehensive perspective on functional synthesis which in-

volves synthesizing functions that satisfy given specification. The thesis views func-

tional synthesis through the lens of recent advancements in machine learning and

formal methods. By harnessing the power of these cutting-edge technologies, our

objective is to propose scalable techniques to automatically generate functions that

meet the specified formal requirements.

1.1 Functional Synthesis

Functional synthesis is the process of finding a function that provably meets require-

ments of the specification. The objective of functional synthesis is to synthesize func-

tions that correctly map each possible input assignments to an appropriate output,

ensuring that the combined inputs and outputs satisfy the given specification.

Functional synthesis is a fundamental problem of computer science and has a

long history dating back to the work of Boole [Boo47] and Lowenheim [L1̈0], they

studied variants of this problem in the context of finding most general unifiers. It

was later pursued rigorously by Skolem and Herbrand [L1̈0]. Skolem focused on

the existence of Skolem-normal form, which refers to a form in which existentially

quantified variables in a given specification could be eliminated. In regards to that,

Functional synthesis is also referred as Skolem synthesis. Specifically, the given

4

a specification, ∀X∃Y φ(X,Y), where X and Y are sets of inputs and outputs and

φ describes the underlying given relation specification between inputs and outputs,

the task of functional synthesis is to synthesize outputs Y in terms of inputs X

(i.e. Y = F (X)) such that the specification is met. The functions corresponding to

output Y is called Skolem functions.

The problem has a wide range of applications, including certified QBF solv-

ing [RT15, RTRS18], circuit synthesis and repair [KS00], program synthesis [SGF13],

automated program repair [JMF14], cryptanalysis [MM00], logic minimization [Bra89,

BS89]. Few of the applications are discussed in detail:

Cryptanalysis In cryptography, large prime numbers are used to create strong

encryption keys. If someone were able to efficiently compute the factors

of a large composite number, they could potentially break the encryption

key and access the information it was protecting. Let X = {x1, . . . , x2n},

Y 1 = {y11, . . . , y1n}, Y 2 = {y21, . . . , y2n}, and specification φ(X,Y 1, Y 2) be

X = (Y 1 ×n Y
2) ∧ ¬(Y 1 = 1[n]) ∧ ¬(Y 2 = 1[n]), where 1n represent the

bit vector 1 of size n. The specification states that Y 1 and Y 2 are non-trivial

factors of X. The Skolem function corresponding to Y 1 and Y 2 can be used

to compute the factors of X for the formula ∀X∃Y 1, Y 2φ(X,Y 1, Y 2), and ef-

ficiently computing functions to compute these factors could potentially be

used to break cryptographic systems.

Circuit Repair In circuit repair, given an incomplete implementation and spec-

ification, the task is to complete the implementation s.t. it is functionally

equivalent to specification [GRS+13]. Skolem synthesis could be used to re-

generate faulty circuits. Let us consider specific example1 shown in Figure 1.1.

In the Figure 1.1, BB1 and BB2 are faculty part of the circuit and we need to

synthesize y1 and y2 in terms of inputs x1, x2 to fill the black-box BB1 and BB2.

For the considered example, ∀x1, x2,∃y1, y2¬(((y1∨y2)∨(x1∧¬x2))⊕(x1⊕x2))
1Image is taken(modified) from Equivalence Checking of Partial Designs Using Dependency

Quantified Boolean Formulae, Gitina et al ’13 [GRS+13].

5

would represent the underlying specification, and Skolem functions corre-

sponding to y1 and y2 would be the required repair.

Figure 1.1: Application of functional synthesis: Circuit repair.

Certified QBF Solving The QBF-SAT problem is the problem of determining

whether a given Quantified Boolean Formula (QBF) is semantically equiva-

lent to True. This problem is known to be in the complexity class PSPACE-

complete [Gar79] and is thought to be significantly harder to solve than propo-

sitional satisfiability. Despite this, there have been significant advances in

practical QBF-SAT solving in recent years [Jan18b, Jan18a, LB10, LE17,

Rab19, RT15, RTRS18]. This has led researchers in various fields, such as

equivalence checking of partial functions [GRS+13], finding strategies for in-

complete games [PRA01], controller synthesis [BKS14], to encode their prob-

lems as QBF-SAT instances and use modern QBF-SAT solvers to solve them.

In many of these cases, however, it is not sufficient to simply determine

whether a QBF is True; it is also necessary to extract a plan, winning strategy,

or similar artifact from the QBF-SAT reasoning in order to apply the solution

to the specific problem at hand. Certified QBF solving is a method for address-

ing this need. Certified QBF solving is a method that involves producing a

6

certificate, a proof of the truth or falsity of a QBF, that can be used to extract

additional information beyond a simple yes/no answer. When a QBF is True,

Skolem functions can be used to construct a certificate of satisfiability. If the

specification in which the outputs are replaced with the synthesized Skolem

function is tautology, then QBF is True. If a QBF is False, a certificate of

unsatisfiability can be obtained by applying the same process to a QBF in the

opposite quantifier form.

The theoretical investigations have shown that certain instances of functional

synthesis can be exceptionally time-consuming. Specifically, complexity theory stud-

ies have demonstrated that there are instances where Boolean functional synthesis

requires super-polynomial time. Furthermore, it has been shown that there are in-

stances where a polynomial-sized Skolem function vector is insufficient unless the

Polynomial Hierarchy (PH) collapses [ACG+18]. Despite the inherent theoretical

difficulty, the practical relevance of functional synthesis has prompted the develop-

ment of algorithms that exhibit scalability. Over the past two decades, there has

been a growing interest in functional synthesis, leading to the emergence of effective

approaches for synthesizing functions effectively [AAC+19, ACG+18, Rab19]. Nev-

ertheless, practical challenges persist, and there are still scenarios where state of the

arts methods face limitations.

This thesis takes a comprehensive perspective on functional synthesis, examin-

ing it from the standpoint of recent advancements in machine learning and formal

methods. Notably, formal methods have experienced remarkable advancements,

particularly in the area of Satisfiability (SAT) problem solving. The SAT prob-

lem involves finding a satisfying assignment, which is a truth assignment to vari-

ables in a specification under which it evaluates to true. It is a widely known

NP-complete problem [Coo23]. However, significant progress has been made in

SAT solvers over the past decade, leading to what is often referred to as the “NP

revolution” [MSLM09]. According to Knuth, who discussed these advancements

in SAT solvers, “these so-called SAT solvers can now routinely find solutions to

7

practical problems that involve millions of variables and were previously consid-

ered extremely challenging” [Knu15]. Furthermore, recent research in this field has

extended beyond finding a single satisfying assignment, surpassing the limitations

of NP. Efficient methods have been developed for counting the number of satisfy-

ing assignments [SGM20, SRSM19], as well as constrained samplers for generating

satisfying assignments [CFM+15, CMV13, SGRM18], algorithms for maximum sat-

isfiability [MML14], and more. These advancements have significantly broadened

the scope and capabilities of formal methods tools.

Inspired by recent progress in machine learning and formal methods, the thesis

proposes efficient and scalable techniques for functional synthesis.

1.2 Contributions

This thesis presents significant contributions aimed at advancing the field of func-

tional synthesis. The specific contributions are discussed in detail below.

1.2.1 A Data-Driven Approach

We proposed a data-driven approach, called Manthan [GRM20, GSRM21], to syn-

thesize functions efficiently. Motivated by progress in machine learning, Manthan

views functional synthesis as a classification problem, relying on advances in con-

strained sampling for data generation, and advances in formal methods for a novel

proof-guided repair and provable verification.

Given a relation specification φ(X,Y) over input X and output Y . The task for

Manthan is to synthesize output Y in terms of X, that is, Y := F (X) such that given

specification is met. This process involves three essential components, as illustrated

in Figure 1.2: (i) constrained sampling for data generation, (ii) machine learning to

learn candidate functions using a dependency-driven classifier, and (iii) verification

and repair of candidates using formal methods. Each components of Manthan is

crucial and employs different techniques to ensure scalability.

8

Data Generation

Learn Candidate
Functions

Verify Repair

Input φ(X, Y)

Output F

No

Yes

Formal
Methods

Constrained
Sampling

Machine
Learning

Figure 1.2: Overview of data-driven approach for functional synthesis.

Data Generations: Current machine learning techniques typically rely on

training data composed of feature valuations and their corresponding labels. In

our case, we consider X as the feature set and Y as the labels. However, unlike

traditional machine learning setups where each assignment to X has a unique label

(Y), our scenario involves a relation between X and Y, which may not be strictly a

function. To address this, we have developed an adaptive weighted sampling strat-

egy that enables the generation of a representative dataset suitable for training a

classifier. We rely on progress in constrained sampling to generate data efficiently.

Learn Candidates Functions: When considering training data consisting of

feature valuations (X) and their associated labels (Y), a common machine learning

approach is to employ multi-class classification to learn a symbolic representation, Y

= h(X), where h represents the learned classifier. However, this approach does not

guarantee that h can be represented as a vector of Boolean functions. To address

this limitation, the thesis introduces an innovative dependency-aware classifier. This

classifier constructs a vector of decision trees, each corresponding to an output, with

each decision tree expressed as a Boolean function. This approach ensures that the

learned classifier can be represented as a collection of Boolean functions.

Verify and Repair: As machine learning techniques often yield good but ap-

9

proximate solutions, we enhance Manthan with automated reasoning methods to

verify the accuracy of decision tree-based candidates and to get a counterexample

for which candidates fail to meet the specification. In order to fix the counterexam-

ple and to leverage the high test accuracy achieved by machine learning models, we

propose a proof-guided repair technique. This iterative approach aims to identify

and apply minor repairs to the candidate functions until we converge to a provably

correct function vector. We utilize a MaxSAT solver to identify potential repair

candidates and extract unsatisfiability cores from the infeasibility proofs. These

cores capture the reasons why the candidate functions fail to meet the specification

and assist in constructing effective repairs.

Impact. We have developed a tightly integrated framework called Manthan that

exhibits remarkable scalability. Notably, Manthan has successfully synthesized func-

tions for 509 out of a total of 609 instances from the standard suite. To provide

context, previous state-of-the-art tools [ACG+18, AAC+19, RTRS18] were only able

to solve a maximum of 280 instances. This means that Manthan has surpassed the

state-of-the-art by solving an additional 40% of instances, demonstrating its signif-

icant improvement in performance.

1.2.2 Synthesizing Functions with Explicit Dependencies

The achievements in functional synthesis paved the way for studying different vari-

ants of it, which are more harder from the complexity-theoretic perspective and

more useful in the real world. We turned our attention towards functional synthesis

with explicit dependencies, in which instead of depending on all inputs, the output

Y is only allowed to depend on a subset of inputs X. In particular, given a relation

specification φ(X,Y) over input X and output Y , the task is to synthesize each

output yi in terms of Hi, that is, Y := f(Hi), where Hi is a subset of input X

such that the given specification is met. Identifying whether such f(Hi) exists for

each yi is NEXPTIME-complete [PRA01]. The explicit dependencies provides more

10

succinct descriptive power and have wide-ranging applications in computer design

and in formal methods, such as engineering change of order [JKL20], topologically

constrained synthesis [BCJ14], equivalence checking of partial functions [GRS+13],

finding strategies for incomplete games [PRA01], controller synthesis [BKS14], cir-

cuit realizability [BCJ14], program synthesis [SGF13], and synthesis of fragments of

linear-time temporal logic [CHOP13].

Towards this, we proposed Manthan3 [GRM23] to synthesize functions with ex-

plicit dependencies. Manthan3 generates data, learns and repairs the candidates in

accordance with additional constraints imposed by these dependencies.

Impact. We showed that different approaches are suited for different classes of

instances, and Manthan3 pushed the envelope in synthesis with explicit dependen-

cies by handling the instances for which none of the state-of-the-art tools could

not synthesize functions. In particular, all state-of-the-tools were able to synthesize

functions for 204 instances out of 563 standard instances in a virtual best portfolio

setting, and Manthan3 could achieve the smallest synthesizing time on 42 bench-

marks out of 204, including 26 instances for which none of the other competing

tools could synthesize functions.

1.2.3 Program Synthesis via Functional Synthesis

Motivated by its impressive scalability, our focus shifted towards program synthe-

sis as a means to explore potential applications for functional synthesis. Program

synthesis involves automatically generating a program that meets specific user re-

quirements. In recent developments, these requirements encompass both syntactic

(grammar-related) and semantic aspects [ABJ+13a]. In the thesis, we specifically in-

vestigated the significance of syntactic requirements (grammar) in program synthe-

sis, and examined the feasibility of synthesis techniques that do not rely on grammat-

ical restrictions, which we termed Theory-constrained synthesis, or T-constrained

synthesis. We proposed a reduction of T-constrained synthesis to functional synthe-

11

sis with explicit dependencies when there are no syntactic requirements.

Impact. Our reduction allows us to transform Manthan as a state of the art ap-

proach for program synthesis tasks over bit-vector theory [GRM21]. Manthan was

able to synthesize functions for 592 instance over a total of 609, whereas, the state-of-

the-art SyGuS solver could synthesize functions for only 488 instances — Manthan

was able to handle more Sinstances than the state-of-the-art program synthesis

solver. Our reduction of program synthesis to functional synthesis motivates need

of domain-agnostic approaches.

1.2.4 Beyond All-or-Nothing Approach

Traditional approaches to designing and verifying systems often adhere to an “all-or-

nothing” principle, where they either provide rigorous theoretical guarantees or no

guarantees at all. Methods that offer rigorous guarantees tend to sacrifice scalability,

while scalable techniques often lack guarantees. This ”all-or-nothing” approach

poses a significant bottleneck to the widespread adoption of synthesis and verification

techniques in real-world settings.

In reality, not all constraints have equal priorities. Certain constraints may

have higher priority and require stricter guarantees than others. For instance, when

synthesizing a controller for an autonomous vehicle, a high-priority constraint would

be to ensure that the vehicle does not harm bystanders. Conversely, while it is

desirable for the vehicle to exhibit smooth speed changes and lane transitions, these

constraints may not carry the same level of importance. Acknowledging the varying

priority levels of constraints in real-world scenarios can lead to more practical and

adaptable approaches to synthesis and verification, as it allows for a more nuanced

treatment of constraints based on their significance.

Such scenarios also arise in other contexts: consider a financial institution that

needs to decide whom to give a loan. They must follow mandatory regulations

such as non-discrimination based on gender, race and more protected attributes.

12

Furthermore, the prior dataset available in this regard could be of great use to inform

the likelihood of the loan being defaulted. Therefore, an ideal system should agree

as much as possible with the dataset while following the mandatory regulations.

The aforementioned cases highlight the need for a general framework where end

users can define different classes of constraints: hard constraints that must never

be violated, and soft constraints that should be satisfied to the greatest extent

possible. In such cases, it is typically desirable to have a quantifiable measure that

captures the degree to which the system satisfies the soft constraints. To address

this, a synthesis engine is necessary to ensure that the system can meet the specified

threshold for satisfying these soft constraints.

Towards this, we proposed a general-purpose framework, called HSsynth [GRM]

that relies on advances in automated reasoning and formal methods to provably

satisfy hard constraints and achieve satisficing threshold on soft constraints.

Impact. The prototype implementation of HSsynth demonstrates its versatility in

handling various scenarios involving different combinations of hard and soft con-

straints, such as formulas, data, and their combinations, to synthesize the required

system. When treating soft constraints as data, HSsynth achieved efficient system

repair to satisfy hard constraint, taking less than 20 seconds. Moreover, the sat-

isficing measure of the synthesized system exceeded 80% for nearly all considered

datasets and hard constraints.

In cases where both soft and hard constraints were expressed as formulas, HSsynth

exhibited impressive performance, completing synthesis in approximately half the

time of the complete synthesis approach. This time-saving was observed for approx-

imately 25% to 60% for range of hard constraints examined.

1.3 Tools

The following open-source tools have been developed as part of this thesis:

Manthan: https://github.com/meelgroup/manthan

13

DeQuS: https://github.com/meelgroup/dequs

1.4 Outline

This thesis is divided into five parts. The next chapter 2 introduces the necessary

notations and background.

We then move to Part II discuss the all necessary ingredients required to do

functional synthesis via formal methods and machine learning. In this part, we

first discuss the different preprocessing techniques in Chapter 3. In Chapter 4,

we discussed how to generate data given a relation specification. Moving on, we

discussed machine learning techniques to learn candidate functions in Chapter 5,

and formal methods technique to verify and repair candidates in Chapter 6.

We then move to Part III that discusses the recipe and results for functional

synthesis with or without explicit dependencies. Chapter 7 presents the algorithm

and detailed experimental results for Skolem synthesis (functional synthesis without

explicit dependencies). Chapter 8 presents the algorithm and detailed experimental

results for Henkin synthesis (functional synthesis with explicit dependencies).

We then move to Part IV that discusses generalization of functional synthesis.

Chapter 9 establishes the link between functional synthesis and program synthesis

by showing a reduction of program synthesis to dependency quantified formulas,

and Chapter 10 presents a complete approach to uplift the machine learning and

formal method based techniques to handle real-world scenarios in which all given

constraints might not have the same priority. Finally, Part V summarizes the thesis.

Chapter 2

Preliminaries and Related Work

2.1 Boolean Formulas and Beyond

We use a lower case letter to represent a propositional variable and an upper case

letter to represent a set of variables. A literal is either a variable or its negation,

and a clause is considered as a disjunction of literals. A formula φ represented as

conjunction of clauses is considered in Conjunctive Normal Form (CNF). Vars(φ)

represents the set of variables appearing in φ. A satisfying assignment(σ) of the

formula φ maps Vars(φ) to {0, 1} such that φ evaluates to True under σ. We use

σ |= φ to represent σ as a satisfying assignment of φ. For a set of variables V , we

used σ[V] to denote the restriction of σ to V . If φ evaluates to True for all possible

valuation of Vars(φ), φ is considered as tautology.

We use φ(V)|vi=b to denote substitutions: a formula obtained after substituting

every occurrence of vi in φ(V) by b, where b can be a constant (0 or 1) or a formula,

and V is Vars(φ). Let P ⊆ V ars(φ) is called projection set of formula φ such that

an assignment σ↓P : P 7→ {0, 1} can be extended to an assignment σ such that

σ |= φ and σ↓P = σ[P]. The satisfiable region of a formula φ is a set of all satisfying

assignments of φ.

15

Unsatisfiable core. An unsatisfiable core of a formula in CNF is a subset of

clauses for which there is no satisfying assignment. We use UnsatCore to denote an

unsatisfiable core when the formula is understood from the context.

MaxSAT. For a given CNF formula in which some clauses are declared as hard

constraints and the rest are declared as soft constraints, the problem of (partial)

MaxSAT is to find an assignment of the given formula that satisfies all hard con-

straints and maximizes the number of satisfied soft constraints.

Model counting. Given a formula φ as input, compute the number of satisfying

assignments of formula, that is, compute |sol(φ)|. The problem of projected model

counting is given a formula and a projection set P , compute |sol(φ)↓P |.

Constrained sampling. A constrained sampler takes a formula φ and a number

of required satisfying assignments N, and returns satisfying assignments σ1, . . . , σN

in accordance to the distribution induced by the sampler.

Given a propositional formula φ(X) and a weight function W (·) assigning non-

negative weights to every literal of the formula, we refer to the weight of a satisfying

assignment σ, denoted asW (σ), as the product of weights of all the literals appearing

in σ, i.e., W (σ) =
∏

l∈σW (l). A sampler A(·, ·) is a probabilistic generator that

guarantees ∀σ ∈ Rφ, Pr [A(φ,Bias) = σ] ∝ W (σ), where Bias is weight vector for

literals of variables of φ.

Uniform sampling is to generate satisfying assignment of given specification uni-

formly at random, that is, weight of every literals is considered to be 0.5. A uniform

sampler samples the required number of satisfying assignments uniformly at random

from the solution space of the formula.

Let us take a particular example to understand the weighted sampling. Con-

sider weights of literals is given to us as: 〈W (x1) = 0.5, W (x2) = 0.5, W (y1) =

0.9, W (y2) = 0.1〉. The weight of the satisfying assignment σ : 〈x1 ↔ 1, x1 ↔

0, y1 ↔ 0, y2 ↔ 1〉 is product of weights of literals of σ, that is, 0.5 × (1 − 0.5) ×

16

(1 − 0.9) × 0.1 is 0.0025. Therefore, the probability of sampling σ from solution

space of specification is proportional to 0.0025.

This thesis explores the problem of functional synthesis, commonly referred to

as Skolem synthesis in the literature, as well as synthesis with explicit dependencies,

known as Henkin synthesis. Furthermore, the thesis also introduces Satisficing syn-

thesis, which goes beyond the traditional all-or-nothing approach. In the following

sections, we will provide a detailed formal introduction to each of these problems.

2.2 Skolem Synthesis

A Quantified Boolean Formula (QBF) ϕ is Q1X1, Q2X2, . . . , QnXnφ(X1, . . . , Xn),

where each Qi belongs to the set {∀,∃} quantifiers, Xi represents a set of variables,

and φ is a CNF formula over X1 to Xn. In the context of 2-QBF formulas, only two

levels of quantification are permitted. Thus, a 2-QBF formula ϕ can be represented

as Q1X1, Q2X2φ(X1, X2). This thesis focuses exclusively on 2-QBF formulas.

For a formula ϕ of the form ∀X∃φ(X,Y), where X = {x1, . . . , xn} and Y =

{y1, . . . , ym}, it is considered False if there exists an assignment of X to {0, 1}

for which there is no assignment of Y to {0, 1} such that φ(X,Y) is satisfiable.

Conversely, ϕ is considered True. The problem of Skolem synthesis deals with syn-

thesizing functions for each yi in terms of X such that φ is satisfiable.

Problem

Statement

Skolem Synthesis:

Given a Boolean specification φ(X,Y) between set of inputs X =

{x1, · · · , xn} and vector of outputs Y = 〈y1, · · · , ym〉, the prob-

lem of Skolem synthesis is to synthesize a function vector f =

〈f1(X), · · · , fm(X)〉 such that yi ↔ fi(X) and ∀X(∃Y φ(X,Y) ↔

φ(X,f)). We refer to f as the Skolem function vector and fi as

the Skolem function for yi.

17

Related work. The origins of Boolean functional synthesis can be traced back to

Boole’s seminal work [Boo47], which was further developed in terms of decidability

by Lowenheim and Skolem [L1̈0]. From a complexity theory perspective, solving

Boolean functional synthesis is classified as PSPACE-complete [Gar79], and specif-

ically, determining True and False 2-QBF formula falls under the complexity class

Σp
2. Complexity studies have shown that there exist instances where Boolean func-

tional synthesis requires super-polynomial time, and it has also been demonstrated

that polynomial-sized Skolem function vectors are insufficient unless the Polynomial

Hierarchy (PH) collapses [ACG+18].

Motivated by the success of the CEGAR (Counter-Example Guided Abstraction

Refinement) approach in model checking, CEGAR-based techniques have been ex-

plored in the context of synthesis. The key idea is to use Conflict-Driven Clause

Learning (CDCL) SAT solvers to verify and refine candidate Skolem functions

[AAC+19, ACG+18, ACJS17, JSC+15]. Another line of research focuses on rep-

resenting the specification, F (X,Y), in forms that are amenable to efficient syn-

thesis for a class of functions. Early approaches employed Reduced Ordered Bi-

nary Decision Diagrams (ROBDDs), building on the functional composition ap-

proach proposed by Balabanov and Jiang [BJ11]. Chakraborty et al. extended the

ROBDD-based approach to factored specifications, leveraging the work of Tabajara

and Vardi [CFTV18, TV17]. Factored specifications had previously been explored

in the context of CEGAR-based approaches. Drawing inspiration from the success

of knowledge compilation in probabilistic reasoning, Akshay et al. made signifi-

cant progress in proposing a new negation normal form called SynNNF [AAC+19].

SynNNF provides a generalized and efficient representation for functional specifica-

tions, facilitating efficient functional synthesis.

Incremental determinization has been another avenue of research for construct-

ing Skolem functions incrementally [HSB14, JBS+07, NPL+12, Rab19, RTRS18].

Several approaches have been proposed for the specific case when the specification

∃Y φ(X,Y) is valid, i.e., ∀X∃Y φ(X,Y) is true. Chakraborty et al. recently intro-

18

duced an approach based on the idea of sequential relational decomposition, where

each CNF clause of the specification is treated as a combination of input and output

clauses, and a cooperation-based strategy is employed [CFTV18]. The advancement

of modern CDCL solvers has led to the exploration of heuristics for problems be-

yond NP, including the extraction of Skolem functions from proofs constructed for

formulas expressed as ∀X∃Y φ(X,Y) [BJ11, BJ12].

2.3 Henkin Synthesis

A formula ϕ is Dependency Quantified Boolean Formula (DQBF) if it can be

represented as ϕ : ∀x1 . . . xn ∃H1y1 . . . ∃Hmymφ(X,Y) where X = {x1, . . . , xn},

Y = {y1, . . . , ym} and Hi ⊆ X represents the dependency set of yi, that is, variable

yi can only depend on Hi. Each Hi is called Henkin dependency and each quantifier

∃Hi is called Henkin quantifier [Hen61].

A DQBF ϕ is considered to be True, if there exists a function fi : {0, 1}|Hi| 7→

{0, 1} for each existentially quantified variable yi, such that φ(X, f1(H1), . . . , fm(Hm)),

obtained by substitution of each yi by its corresponding function fi, is a tautology.

Given a DQBF ϕ, the problem of DQBF satisfiability, is to determine whether a

given DQBF is True or False. In several cases, the decision problem is not enough,

and we are interested in a functional formulation, called Henkin synthesis, wherein

the task is to synthesize functions for each of the existentially quantified yi variables.

Problem

Statement

Henkin Synthesis:

Given a True DQBF formula, ∀x1 . . . xn ∃H1y1 . . . ∃Hmym φ(x1, . . . ,

xn, y1, . . . , ym) where x1, . . . , xn ∈ X, y1, . . . , ym ∈ Y , Hi ⊆ X, the

problem of Henkin Synthesis is to synthesize a function vector

f : 〈f1, . . . , fm〉 such that φ(X, f1(H1), . . . , fm(Hm)) is a tautology.

f is called Henkin function vector and each fi is a Henkin function.

19

From now onwards, we used ∀X∃H1y1 . . . ∃Hmym φ(x1, . . . , xn, y1, . . . , ym) and

∀X∃HY φ(X,Y) interchangeably.

Henkin synthesis vs Skolem synthesis. Henkin synthesis generalize the Skolem

synthesis. The problem of Skolem synthesis is defined in the context of a special

case of DQBF, called 2-Quantified Boolean Formula (2-QBF), for which H1 = H2 =

. . . = Hm = X. In such a case, one omits the usage of Hi and simply represents

ϕ as ∀X∃Y φ(X,Y). ϕ : ∀X∃Y φ(X,Y) is a 2-QBF formula, where variables X is

universally quantified and Y is existentially quantified variables and φ(X,Y) is an

arbitrary Boolean formula over X and Y .

Considering an example to highlight the difference between Henkin and Skolem

functions. Let ϕ : ∀x1, x2 ∃y1 φ(x1, x2, y1), where φ(x1, x2, y1) is (y1 ↔ (x1 ∨ x2)) —

ϕ is a 2-QBF formula. There exists a Skolem function f1(x1, x2) := (x1 ∨ x2) such

that ∀x1, x2(∃y1φ(x1, x2, y1) ↔ φ(x1, x2, f1(x1, x2))). Now, let us consider the case

where we have restricted the dependencies for y1, ϕ : ∀x1, x2∃H1y1 (y1 ↔ (x1 ∨ x2)),

where H1 = {x1}. ϕ is a DQBF formula, and y1 can only depend on x1, that is,

in some sense it can only see the valuation of x1. The only possible functions over

x1 are: {0, 1, x1,¬x1} and by simple enumeration over all choices, we can conclude

that there does not exists a function, f1(x1) such that φ(x1, x2, f1(x1)) is a tautology;

that is, there does not exists a Henkin functions and corresponding DQBF is false.

Related work. DQBF has been classified as NEXPTIME-complete in terms of

complexity [PRA01]. However, due to its wide range of applications, there has been

significant interest in solving DQBF problems in recent years [FKBV14, GRS+13,

GWR+15, Sìc̆20, RSS21, TR19, WWSB16].

The first DPLL-based approach to solve DQBF satisfiability was introduced by

Frohlich et al. [FKB12]. Building on this direction, Tentrup and Rabe proposed the

idea of using clausal abstraction for DQBF solving [TR19]. Gitina et al. presented

20

a basic variable elimination strategy for solving DQBF instances, which involves

transforming a DQBF instance into a QBF instance by eliminating variables that

introduce non-linear dependencies. This strategy was further enhanced through

optimizations in subsequent work [GRS+13, GWR+15]. Frohlich et al. also proposed

a similar approach, where a DQBF instance is transformed into a SAT instance

through local universal expansion on each clause [FKBV14].

Wimmer et al. devised a method to obtain Henkin functions from DQBF solvers

that are based on variable elimination techniques [WWSB16]. Elimination-based

DQBF solvers perform a sequence of quantifier elimination transformations on a

DQBF instance to obtain an equisatisfiable sequence of formulas φ1, φ2, . . . , φk.

They demonstrated that for a True DQBF instance, the Henkin function for φi−1

can be obtained from φi.

Reichl, Slivovsky, and Szeider proposed a different approach using interpolation-

based definition extraction [RSS21]. They introduced “arbiter variable” that repre-

sent the value of an existential variable for assignments of its dependency sets, in

cases where the variable is not uniquely defined. The method extracts the definitions

for existential variables in terms of their dependency sets and the arbiter variables.

The approach is certifying by design and yields Henkin functions.

2.4 Program Synthesis

Program synthesis is synthesizing program from the given set of requirements or

constraints. In our formulation, the constraints over the functions to be synthesized

are specified in the vocabulary of a given background theory T along with the func-

tion symbols. Notice that the background theory specifies the domain of values for

each variable type along with the interpretation for the function(s) and predicate

symbols in the vocabulary.

21

Problem

Statement

T-constrained synthesis:

Given a background theory T, a set of typed function sym-

bols {f1, f2, . . . fk}, a specification φ over the vocabulary of T ∪

{f1, f2, . . . fk}, the problem of T-constrained synthesis is to find

the set of expressions {e1, e2, . . . ek} defined over vocabulary of T

such that φ[f1/e1, f2/e2, . . . fk/ek] is valid modulo T.

Related work. The roots of program synthesis can be traced back to the 1930s.

The idea of constructing interpretable solutions with proofs through the composi-

tion of solutions to smaller sub-problems [Kol32] build the foundation for program

synthesis. This was followed by deductive synthesis strategies in [Gre81, MW71].

Alur et al. introduced the concept of using grammars for syntax-guided synthe-

sis [ABJ+13b]. They demonstrated that incorporating grammars that is syntactic

restriction can lead to efficient program synthesis and results in more interpretable

programs [ABJ+13b, ARU17, URD+13].

Another approach is building synthesizers on top of SAT/SMT solvers [RDK+15].

The CVC4 synthesis engine [RDK+15] was the first implementation of a synthesis

engine within an SMT solver. It extracts desired functions from the unsatisfiability

proofs of negated synthesis conjectures. Reynolds et al. proposed two techniques in

[RDK+15]: counterexample-guided quantifier instantiation and enumerative syntax-

guided synthesis. The former is fast but can produce verbose solutions, while the

latter is slower but yields concise solutions.

The recent advancements in machine learning have prompted several attempts to

incorporate machine learning techniques in various synthesis domains, such as pro-

gram synthesis [ABJ+13b], invariant generation [FG19], decision-tree synthesis for

functions in Linear Integer Arithmetic theory using pre-specified examples [FG19],

and strategy synthesis for QBF [Jan18b].

Data-driven approaches for invariant synthesis have been explored in the ICE

22

learning framework [END+18, GLMN14, GNMR16], which leverages program be-

havior data from test executions to propose invariants by learning from the data.

It checks for inductiveness and, in case of failure, expands the data using the gen-

erated counterexamples. The use of proof artifacts, such as unsat cores, has been

investigated in verification [GLST05] and program repair [VR17], while MaxSAT

has been employed in program debugging [BPR16, JMS11].

Recent research has also focused on understanding the impact of the provided

grammar on the performance of existing synthesis tools. Kim et al. introduced

semantic-guided synthesis [KHDR21], and Padhi et al. empirically demonstrated

that increasing the expressiveness of the grammar leads to a significant deterioration

in tool performance [PMNS19].

2.5 Satisficing Synthesis

Let us consider two types of constraints, (i) a set of hard constraints φH(X,Y) and

(ii) a set of soft constraints φS(X,Y). Our goal is to synthesize a system F (X)

that satisfies all the hard constraints and achieves a satisficing measure on the soft

constraints above predefined thresholds. The satisficing measure SM() essentially

captures the number of input valuations for which the soft constraints φS(X,Y) are

satisfied by F (X), which could be computed as per Equation

SM(ψ(X,Y), G(X)) :=
ModelCount((ψ(X,Y) ∧ (Y ↔ G(X)))↓X)

ModelCount(ψ(X,Y)↓X)
(2.1)

formally, we define propose the notion of satisficing synthesis as follows:

23

Problem

Statement

Satisficing Synthesis:

Given (i) hard constraints φH(X,Y), (ii) soft constraints

φS(X,Y), and (iii) a satisficing threshold ε, where X is a set

of inputs and Y is a set of outputs, the objective is to synthesize

a system F (X) such that following holds:

• ∀X(∃Y φH(X,Y)↔ φH(X,F (X))),

• SM(φS(X,Y), F (X)) ≥ ε.

Related work. Our setting of hard and soft constraints can be applied to various

synthesis settings. Here, we will provide a brief overview of some of these domains.

In the domain of approximate synthesis, the objective is to synthesize a circuit C ′

from a given circuit C such that the size of C ′ is smaller than C, while maintaining an

accuracy threshold. This problem involves optimizing circuit size while preserving

functionality accuracy [HLR12, NLBR14, SAC+20, XMK15].

Best-effort synthesis techniques tackle scenarios where synthesizing a program

that satisfies all constraints is too challenging. Instead, they focus on synthesizing

as many specified constraints as possible within the available resources. These tech-

niques employ bottom-up enumeration to generate candidate solutions that satisfy

m constraints, then attempt to satisfy m + 1 constraints. Finally, a ranking-based

method is used to select the candidate that satisfies the maximum number of con-

straints while reducing its size [PP20].

Programming-by-examples approaches have been explored in the presence of

size constraints for synthesized functions [BGHZ15, PSY18, ZS13]. Techniques that

incorporate user intent, processed using natural language processing techniques as

soft constraints, along with input-output examples as hard constraints, developed

to synthesize systems [CMF19]. Recently, Kalita et al. introduced the problem of

automatically creating abstract transformers as an example-based synthesis, where

positive examples are considered hard constraints and negative examples are treated

as soft constraints [KMD+22].

Part II

Ingredients for Functional

Synthesis

24

25

In this part of this, we are going to propose different components or ingredients

for functional synthesis.

• Preprocessing of given specification (Chapter 3).

• Generating data from the specification (Chapter 4)

• Data-driven learning of candidates (Chapter 5).

• Verifying and repairing candidates using formal methods (Chapter 6).

Chapter 3

Preprocessing

In functional synthesis, several preprocessing techniques are employed to identify

functions that are computationally simple. These functions typically fall into two

categories: constant functions, which have fixed output values of either 0 or 1, and

unique functions, which can be uniquely determined based on their inputs. For a

unique function, once the input value X is established, the corresponding output

value yi is uniquely defined.

In this chapter, we will explore various syntactic and semantic techniques used

to ascertain constant and unique functions.

3.1 Finding Unates

Pivotal

Insights

We employ SAT solvers to identify a specific subset of variables

that exhibit constant (unate) functions. By doing so, we extract

the constant functions and effectively reduce the overall number of

functions that require learning.

First, let’s focus on identifying constant functions, which are referred to as

unates. Put simply, a variable yi is considered a unate if it consistently evalu-

ates to 1 (or 0) across all possible input valuations that result in the specification

being true. We can categorize yi as a positive unate if the function fi associated

27

with it is always 1, and as a negative unate if fi is always 0.

There are both syntactic and semantic approaches to identify such constant func-

tions. For example, if an output variable yi consists solely of positive literals (e.g.,

yi itself) or negative literals (e.g., ¬yi) in the specification φ, then the corresponding

function fi is a constant 1 or 0, respectively. However, it’s important to note that a

variable being a positive unate or a negative unate doesn’t necessarily mean it will

be represented solely by positive or negative literals. Therefore, in general cases, we

require a semantic verification to efficiently identify these unates.

A variable yi is a positive unate if and only if φ(X,Y)↓yi=0 → φ(X,Y)|↓yi=1

— that is, whenever yi takes value 0 to satisfy the specification, it could also

take value 1. Similarly, if yi is considered to be negative unate, φ(X,Y)↓yi=1 →

φ(X,Y)|↓yi=0 [ACG+18].

If Formula 3.1 turns out to be UNSAT, then yi is positive unate and correspond-

ing function fi is constant function 1.

φ(X,Y)|yi=0 ∧ ¬φ(X,Y)|yi=1 (3.1)

Similarly, if Formula 3.2 turns out to be UNSAT, then yi is negative unate and

corresponding function fi is constant function 0.

φ(X,Y)|yi=1 ∧ ¬φ(X,Y)|yi=0 (3.2)

We could use SAT solver to check the satisfiability of Formula 3.1 and 3.2, if

Formula 3.1 (resp. Formula 3.2) turns out to be UNSAT, then we can consider

the corresponding yi to be positive (resp. negative) unate — one SAT solver call

corresponding to an output variable is sufficient to detect if it is unate or not.

In [ACG+18], authors have proposed an algorithm to detect unates efficiently.

Preprocess performs SAT queries on the formulas constructed on aforementioned

formulas 3.1 and 3.2.

28

Algorithm to Extract Unate Functions. As described in Algorithm 1, Preprocess

sequentially detects unate for every yj of Y variable. Preprocess first checks for the

satisfiability of positive unate formula (line 3) for yj. If yj is a positive unate, then

fj is 1 (line 7), and yj is added to set U . If yj is not a positive unate, then Preprocess

checks for the satisfiability of negative unate formula (lines 9). If yj is a negative

unate, then fj is 0 (line 13), and yj is added to set U . List U represents the list of

unates among Y variables.

Algorithm 1 Preprocess(φ(X,Y))
1: U ← ∅
2: for each yj ∈ Y do
3: retpos, ρpos ← CheckSat(φ(X,Y)|yj=0 ∧ ¬φ(X,Y)|yj=1)
4: if retpos = UNSAT then
5: U ← U ∪ yj
6: φ(X,Y)← φ(X,Y)|yj=1

7: fj ← 1 ▷ yj is positive unate
8: else
9: retneg, ρneg ← CheckSat(φ(X,Y)|yj=1 ∧ ¬φ(X,Y)|yj=0)

10: if retneg = UNSAT then
11: U ← U ∪ yj
12: φ(X,Y)← φ(X,Y)|yj=0

13: fj ← 0 ▷ yj is negative unate
14: return f , U

3.2 Extracting Unique Functions

Pivotal

Insights

To minimize the number of functions that need to be learned, we

utilize an interpolation-based technique to identify a specific subset

of variables with unique functions.

To identify uniquely defined functions, we employed interpolation-based tech-

niques. In the literature, a variable is considered uniquely defined when its value

can be uniquely determined based on the values of other variables. This relationship

is often referred to as the “definition” of a variable in terms of others. To clarify

further, let us begin by providing a formal definition for this:

29

Definition 3.1 ([LM08]). Let φ(W) be a formula, w ∈ W , S ⊆ W \ w. φ(W)

defines w in terms of S if and only if there exists a formula ψ(S) such that φ(W) |=

w ↔ ψ(S). In such a case, ψ(S) is called a definition of w on S in φ(W).

Now that, we have established that ψ(S) is a function or “definition” correspond-

ing to w in φ(W). Next, we need to identify if such definition exists corresponding

to output variable. To this end, given φ(W) defined on W = {w1, w2, . . . wn}. We

create another set of fresh variables Z = {z1, z2, . . . zn}. Let φ(W 7→ Z) represent

the formula where every wi ∈ W in φ is replaced by zi ∈ Z.

Lemma 3.2 (Padoa’s Theorem [Bet56]).

Let, I(W,Z, S, i) = φ(W) ∧ φ(W 7→ Z) ∧

 ∧
wj∈S;j ̸=i

(wj ↔ zj)


∧wi ∧ ¬zi

φ defines wi ∈ W in terms of S if and only if I(W,Z, S, i) is UNSAT.

In the preprocessing stage, our objective is to identify a subset Z ⊆ Y and its

corresponding function vector φZ in such a way that φZ can be extended to form a

valid function vector φ. It is worth noting that the set of unate variables naturally

forms a determined set Z.

To expand the set Z further, we utilize the concept of definability. Through

an iterative process, we identify variables yi ∈ Y that can be defined in terms of

the remaining variables, ensuring that their definitions fi adhere to the dependency

constraints imposed by the definitions of variables in Z. To extract these corre-

sponding definitions, we employ Padoa’s theorem (Lemma 3.2), which allows us to

check whether yi can be defined in terms of the other variables.

While the Padoa’s theorem offers a decision procedure to ascertain whether a

variable yi can be defined in terms of the remaining variables, an alternative ap-

proach was proposed in the work by the authors of [Sli20]. In their study, they

introduced a method that utilizes interpolation-based techniques to extract the cor-

30

responding definition of yi. Here are the following key observations [Sli20]:

• If I(W,Z, S, i) is unsatisfiable, then there exists an interpolant ψ such that

– The support of φ is a subset of W

– φ ∧ yi |= ψ

– ψ |= ¬φ[W 7→ Z; yi 7→ zi] ∨ ¬zi, or equivalently, φ[W 7→ Z; yi 7→ zi] ∧

¬zi |= ψ

In the work by Slivovsky [Sli20], a technique was proposed to leverage off-the-

shelf interpolant extraction solvers for the extraction ψ as unique functions. The uti-

lization of this unique function extraction technique offers significant advantages by

reducing the number of variables that need to undergo learning and repair. Unique

functions, by their nature, do not require repair. This reduction in the reliance on

learning is beneficial. Moreover, the interpolation-based extraction method enables

the computation of complex functions with large sizes. These functions would typi-

cally necessitate an impractical number of samples to learn, surpassing the feasibility

of learning-based techniques.

We would like to emphasize the importance of allowing variable yi to depend,

within the constraints of dependencies, on other variables in set Y . Let’s consider the

example where X = x1 and Y = y1, y2. Suppose we have a specification φ(X,Y) :=

(y1 ∨ y2) ∧ (¬y1 ∨ ¬y2). Neither y1 nor y2 is defined solely by x1. However, y2

can be defined in terms of y1 (and thus, also x1, y1) with its corresponding function

f2(x1, y1) := ¬y1.

It is important to note that if we did not allow y1 to depend on y2, y1 would not

be uniquely defined. By permitting such dependencies, we ensure the uniqueness of

the definitions and the ability to capture complex relationships between variables.

Algorithm to Extract Unique Functions. Algorithm 2 presents the subroutine

UniDef. UniDef assume access to subroutine FindUniqueDef, which takes a formula

φ(X,Y), a variable yi, and a defining set X, y1, . . . , yi−1 as input, and determines

31

Algorithm 2 UniDef(φ(X,Y),f ,dependson)
1: univar ← ∅
2: for yi ∈ Y \ unates do
3: definingvar ← X ∪ {y1, . . . , yi−1}
4: ret, def ← FindUniqueDef(φ(X,Y),yi,definingvar)
5: if ret = true then
6: univar ← univar ∪ yi
7: fi ← def
8: for yj ∈ fi do
9: dependson[yi] ← dependson[yi] ∪ yj

10: return unates ∪ univar, f , dependson

whether the given variable yi is defined with respect to the defining set or not. If the

variable yi is defined, FindUniqueDef returns true, along with the extracted definition

fi. Otherwise, it returns false (and an empty definition).

UniDef calls subroutine FindUniqueDef with defining set {X, y1, . . . , yi−1} for each

existentially quantified variable yi which is not unate at line 4. If FindUniqueDef

returns true, UniDef adds yi to the set univar at line 6. UniDef adds variables

occurring in fi to the list dependson[yi] at line 9.

Chapter 4

Data Generation

Pivotal

Insights

We utilize a constrained sampler to generate satisfying assignments,

adhering to a specified weight function, from the solution space of

the given specification. These generated samples are then treated

as data and fed into the learning algorithm.

In order to utilize machine learning-based approaches for synthesis, it is necessary

to generate data from a given relation specification. Although we can consider using

all satisfying assignments of the specification as our data, it is important to note that

the number of satisfying assignments can exponentially increase with the number

of inputs. Therefore, we need to generate some satisfying assignments from the

solution space of the specification, and constrained samplers can assist us in the

task of generating samples. As discussed in Chapter 2, a constrained sampler takes a

formula φ and a number of required satisfying assignments N, and returns satisfying

assignments σ1, . . . , σN in accordance to the distribution induced by the sampler.

There can be different weighted distributions from which we can generate samples.

In recent years, various types of samplers have been designed, including uniform

samplers [CMV13, CMV14, CFM+15, DLBS18, EGSS12, SGM20, SGRM18], and

weighted samplers [GSRM19], and choosing the appropriate sampling strategy to

generate training data samples is a crucial decision.

33

4.1 What kind of a Sampling Strategy?

One obvious option is to employ uniform sampling over the inputs X and output

Y . However, the relational nature of the specification φ that connects X and Y

presents intriguing challenges and possibilities. To illustrate this, let’s examine a

specific example where the relational specification is given as φ : (x1 ∨ x2 ∨ y1).

Table 4.1 displays all the possible satisfying assignments for φ, and one potential

satisfying assignment that could be generated using a uniform sampler.

Table 4.1: Data Generation: An example of uniform sampling

x1 x2 y1

0 0 1
0 1 0/1
1 0 0/1
1 1 0/1

x1 x2 y1

0 0 1
0 1 0
1 0 1
1 1 0

Uniform Sampler

Our aim is to design sampling subroutines that facilitate the discovery of Skolem

functions with compact descriptions, considering the relationship between descrip-

tion and sample complexity. When we feed the data generated by a uniform sampler

to a machine learning classifier for learning approximately correct candidate func-

tions, it can be challenging for the classifier to learn the simpler functions. This

challenge is evident even in the provided example with only two inputs and outputs,

whereas in general, we deal with variables of much higher orders, possibly in the

thousands. Therefore, it is crucial for us to generate high-quality data that can

effectively train the classifier.

For instance, referring to the example presented in Table 4.1, where X = x1, x2

and Y = y1, let us define φ := (x1∨x2∨y1). Note that φ has 7 solutions over X∪Y ,

with y1 = 0 appearing in 3 solutions and y1 = 1 appearing in 4 solutions. Moreover,

there exist multiple possible Skolem functions, such as y1 = ¬(x1 ∧ x2). Now, if we

were to uniformly sample solutions of φ over the set of variables x1, x2, y1, we would

observe an almost equal number of samples with y1 = 0 and y1 = 1.

However, upon closer examination of φ, we realize that it is possible to construct

34

a function for y1 as constant 1 and for y2 as constant 0. This condition arises from

the fact that when both x1 and x2 are assigned the value 0, y1 must be assigned the

value 1 to satisfy φ. However, for all other input valuations, y1 can take on either

0 or 1 to make φ true. Similarly, we want y2 to take on the value 0 for all possible

valuations of x1 and x2.

In the aforementioned example, our objective is to generate valuations where y1

(resp. y2) is consistently assigned the value 1 (resp. 0) for all possible combinations

of inputs x1 and x2. Unfortunately, uniform sampling alone would not be capable of

generating the required samples. To generate data that can facilitate the learning of

simpler functions by the classifier, we need to rely on weighted sampling methods.

4.2 Adaptative Weighted Sampling Strategy

In order to incorporate the discussed intuition, we propose a novel approach of

collecting samples using weighted sampling. Our approach involves utilizing a func-

tion called Bias, which takes a mapping from a sequence of variables to the desired

weights of their positive literals. This function assigns appropriate weights to each

of the positive literals based on the given mapping. To simplify notation, we repre-

sent the assignment of weights as Bias(a,b), where positive literals corresponding to

universal variables are assigned a weight of a, and positive literals corresponding to

existential variables are assigned a weight of b. For instance, Bias(0.5, 0.9) assigns

a weight of 0.5 to the positive literals of universally quantified variables and 0.9 to

the positive literals of existentially quantified variables.

We have introduced an innovative technique called adaptive weighted sam-

pling for generating data. This technique involves a multi-step process. Initially,

we generate a set of samples using Bias(0.5, 0.9) and another set of samples using

Bias(0.5, 0.1). These biased samplings are carried out to emphasize the generation

of samples with outputs skewed towards 1 and 0, respectively. In both cases, we

maintain a bias of 0.5 for the inputs, aiming to generate input valuations uniformly

from the solution space.

35

Generate Samples with
W (xi) = 0.5
W (yi) = 0.9
Bias(0.5,0.9)

Generate Samples with
W (xi) = 0.5
W (yi) = 0.1
Bias(0.5,0.9)

Compute Weights qi

Generate Samples with
W (xi) = 0.5
W (yi) = qi
Bias(0.5,q)

Figure 4.1: Data Generation: An adaptive weighted sampling strategy.

Subsequently, we utilize the generated samples to predict the bias q for the

outputs. This bias value q determines the distribution of the output values in the

generated data that will be used to train the learning algorithm. By analyzing this

initial set of samples, we determine the optimal value of q. Once the optimal q is

determined, we generate the remaining samples with Bias(0.5, q), where q is fixed

based on the analysis conducted on the initial set of samples.

Algorithm 3 GetSamples(φ(X,Y), N)
1: Σ1 ← wCMSGen(φ(X,Y), 500, 0.5, 0.9)
2: Σ2 ← wCMSGen(φ(X,Y), 500, 0.5, 0.1)
3: for yj ∈ Y do
4: mj ← Count(Σ1 ∩ (yj = 1))/500
5: nj ← Count(Σ1 ∩ (yj = 0))/500
6: if (0.35 < mj < 0.65) ∧ (0.35 < nj < 0.65) then
7: qj ← mj

8: else
9: qj ← 0.9

10: Σ← wCMSGen(φ(X,Y), N, 0.5, q)
11: return Σ

Algorithm to Generate Data GetSamples presented in Algorithm 3 is used to

generate the data which is fed to machine learning algorithm to learn approximately

correct candidate functions. GetSamples takes φ(X,Y) and number of required

samples as input and returns, Σ, a subset of satisfying assignments of φ(X,Y).

GetSamples first generates 500 samples each with Bias(0.5, 0.9)(line 1), and with

36

Bias(0.5, 0.1)(line 2). The constrained sampler CMSGen [GSCM21] is used to gen-

erate the samples. Then, GetSamples in line 4, calculates mj for all yj, mj is a ratio

of number of samples with yj being 1 to the total number of samples, i.e. 500. Sim-

ilarity, in line 5, it calculates nj for all yj, nj is a ratio of number of samples with

yj being 0 to the total number of samples. Finally, GetSamples generates required

number of samples with Bias(0.5, q); for a yj, q is mj if both mj and nj are in range

0.35 to 0.65, else q is 0.9. Finally, again GetSamples generates the required number

of samples with Bias(0.5, q).

Chapter 5

Candidate Learning

Pivotal

Insights

We propose the design of a dependency-aware classifier that con-

structs a vector of decision trees, each corresponding to a specific

variable yi. Each decision tree represents an approximately correct

function associated with the corresponding variable.

We approach the problem of functional synthesis from a machine learning per-

spective, where the learned machine learning model for the classification of a variable

yi serves as a candidate function for yi. To gather training data regarding the func-

tion’s behavior, we leverage advancements in constrained sampling techniques to

sample solutions of φ(X,Y). It is important to note that φ(X,Y) defines a relation,

not necessarily a function, between X and Y . However, machine learning techniques

typically assume the presence of a function between features and labels, requiring

the use of sophisticated sampling strategies as discussed in Chapter 4.

When considering features and labels, our objective is to learn the relationship

between Y and X. Thus, we treat X as a set of features, and the assignments to Y

as a set of class labels.

Off-the-shelf classification techniques typically demand a training dataset that

is several times larger than the number of potential class labels. However, this re-

quirement becomes highly impractical for problems involving more than a thousand

variables. To address the challenge of limited training data, we take into account

38

two well-known observations from the functional synthesis literature:

1. a function fi for variable yi typically doesn’t depend on all the variables in X,

2. a function vector f where fi depends on variable yj is a valid vector if the

function fj is not dependent on yi (i.e., acyclic dependency), i.e., there exists

a partial order ≺d over {y1, . . . ym}.

We relies on the aforementioned observations and propose a dependency-aware

classifier based learning for functions.

5.1 Learning via Binary Classification

Based on the aforementioned observations, we propose an algorithmic procedure for

learning candidate functions as decision trees in an iterative manner, focusing on bi-

nary classification for each variable yi. The approach addresses the challenges posed

by limited training data. In the iterative process, we update the set of potential

features for a given variable yi based on the candidate functions generated thus far.

To ensure proper feature selection, we consider the dependencies between vari-

ables. Specifically, if variable yj uses yi as a feature in its candidate function and yi

appears as a decision node in the learned classifier’s decision tree, then when learn-

ing the candidate function for yi, we exclude yj as a feature. In other words, we say

that yj is dependent on yi, denoted as yj ≺d yi. Conversely, if yi does not appear

in the candidate function fj for yj, yj is allowed to be a feature for the candidate

function fi of yi.

Once we have obtained the candidate function for each output variable, we can

derive a valid linear extension, denoted as TotalOrder, of the partial order ≺d based

on the candidate function vector f . Finally, the candidate function for yi is com-

puted by considering the disjunction of labels along the edges of all paths from the

root to leaf nodes with a label of 1 in the decision tree.

Figure 5.1 illustrates an example of a learned classifier for the output variable y1,

given the valuations of x1 and x2. The classifier is encoded as a function, specifically

39

x1

x2 1

0 1

0 1

0 1

Figure 5.1: Binary Classification: Learned decision tree with label y1 and features x1, x2.

the disjunction of all paths that lead to leaf nodes labeled as 1. In this case, the

candidate function f1 is represented as p1 ∨ p2, where p1 = ¬x1 ∧ x2 and p2 = x1.

We can make two key observations about the learned candidate functions:

• When learning a candidate function, we essentially learn one level of a decision

list. In this level, if p1 holds true, the output is 1; if p2 holds true, the output

is 1; otherwise, the output is 0. It is important to note that the decision nodes

within a level of the decision list can be interchanged (i.e., p1 and p2 can be

swapped), but decision nodes across different levels cannot be interchanged.

• Through the use of machine learning, we learn approximate correct candidate

functions instead of exact function abstractions. In approximation learning,

candidate functions may have double-sided errors, meaning that a candidate

function fi can evaluate to 0 (or 1) for a particular input valuation, while

the corresponding correct valuation for yi is 1 (or 0). On the other hand, in

abstraction learning, candidate functions have single-sided errors.

Algorithm to Learn Candidates via Binary Classification. Algorithm 4

presents CandidateSkF to learn approximately correct candidate functions. Algo-

rithm 4 assumes access to following three subroutines:

CreateDecisionTree takes the feature and label sets as input (training data) and

returns a decision tree t. We use the ID3 algorithm [Qui86] to construct a

decision tree t where the internal node of t represents a feature on which

a decision is made, the branches represent partitioning of the training data

40

on the decision, and the leaf nodes represent the classification outcomes (i.e

class labels). The ID3 algorithm iterates over the training data, and in each

iteration, it selects a new attribute to extend the tree by a new decision node:

the selected attribute is one that causes the maximum drop in the impurity

of the resulting classes; we use Gini Index [Qui86] as the measure of impurity.

The algorithm, then, extends the tree by the selected decision and continues

extending building the tree. The algorithm terminates on a path if either it

exhausts all attributes for decisions, or the impurity of the resulting classes

drop below a (user-specified) impurity decrease parameter.

Label takes a leaf node of the decision tree as input and returns the class label

corresponding to the node.

Path takes a tree t and two nodes of t (node a and node b) as input and outputs a

conjunction of literals in the path from node a to node b in t.

Algorithm 4 CandidateSkF(Σ, φ(X,Y), yj, D)

1: featset← X
2: for each yk ∈ Y \ yj do
3: if yj /∈ dk then
4: featset← featset ∪ yk ▷ if yk is not dependent on yj

5: feat, lbl ← Σ↓featset,Σ↓yj
6: t← CreateDecisionTree(feat, lbl)
7: for each n ∈ LeafNodes(t) do
8: if Label(n) = 1 then
9: π ← Path(t, root, n)

10: fj ← fj ∨ π
11: for each yk ∈ fj do
12: dj ← dj ∪ yk ∪ dk
13: return fj, D

As we seek to learn functions, we employ binary classifiers with class labels 0

and 1. CandidateSkF shows our algorithm for extracting a Boolean function from

the decision trees: lines 2-4 find a feature set (featset) to predict yj. The feature

set includes all X variables and the subset of Y variables that are not dependent

on yj. CandidateSkF creates decision tree t using samples Σ over the feature set.

41

Lines 7-10 generate candidate Skolem function fj by iterating over all the leaf nodes

of t. In particular, if a leaf node is labeled with 1, the candidate function is updated

by disjoining with the formula returned by subroutine Path.

CandidateSkF also updates dj in D, dj is set of all Y variables on which, yj

depends. If yj depends on yk, then by transitivity yj also depends on dk; in line 12,

CandidateSkF updates dj accordingly.

5.2 Learning via Multi Classification

We have identified that the process of learning candidate functions for each output

variable yi individually becomes computationally expensive when dealing with larger

instances involving thousands of variables. To address this scalability challenge, the

thesis proposes an alternative approach that involves learning a group of candidate

functions simultaneously through multi classification.

Pivotal

Insights

Instead of relying solely on binary classification, we intro-

duce a clustering-based approach that takes advantage of multi-

classification to learn candidate functions for a set of variables

together at a time.

There are mainly two key observations that are essential for designing multi-

classification approach:

Variable Retention: While variable elimination is commonly employed in for-

mal methods to simplify problem instances, it poses a challenge when it comes to

the learning phase and the identification of ”determined features” (as discussed in

Chapter 3). Determined features D refer to variables for which we have already

determined their unique function. Variable elimination has been widely recognized

as an effective preprocessing strategy in formal methods, with numerous studies ex-

ploring its benefits and applications [AAC+19, ACG+18, BLS11, GRM20]. While

42

eliminating determined features by substitution does not impact the existence of

functions for other variables yi ∈ Y \D, it significantly affects the size and complex-

ity of these functions, as they are no longer allowed to depend on the eliminated

variables in determined features D.

Therefore, while variable elimination can simplify the problem representation,

it comes at the cost of losing valuable information and potentially increasing the

complexity of the remaining functions. It is important to carefully consider the

trade-off between problem simplification and the preservation of determined features

when applying variable elimination in the synthesis process.

For example, consider the following scenario: let X = {x1, x2}, Y = {y1, y2} and

φ(X,Y) = (y1 ∨ y2)∧ (¬y1 ∨¬y2)∧ (y1 ↔ (x1 ⊕ x2)). Observe that the function for

y2 in terms of X in the transformed formula φ(x1, x2, y2) will have to be learned as

¬(x1 ⊕ x2). However, when allowing learning over y1, then the desired function for

y2 can simply be learned as ¬y1.

A key observation that has significantly influenced performance is the decision to

retain variables with determined functions instead of substituting and eliminating

them from the specification. When it is determined that a candidate function for a

variable accurately represents the required function, we refrain from substituting it

in the specification and instead keep it as a potential feature during the learning and

repair process. In the example mentioned earlier, even though we have identified

the function corresponding to y1, we don’t substitute it in the specification, allowing

it to be used in learning the function for y2.

This approach bears resemblance to the concept of ”latent features” in machine

learning, where certain features are not directly observable but are derived from

the observable features. By retaining variables with unique functions, we effectively

transform observable features into latent features that can be recovered and utilized

by the learning algorithm.

We conclude that, contrary to conventional wisdom, variables in the determined

set D should not be eliminated and instead should be retained as features for the

43

learning and repairing the approximately correct functions.

Partition the set of Y variables into disjoint subsets:

An important question that still requires an answer is how to determine the optimal

variable partitioning. Our approach is guided by the intuition that variables with

low cohesion within a partition impose fewer constraints, resulting in larger decision

trees and an increased number of classes. Therefore, our aim is to learn and group

variables that are related to each other.

To achieve this, we utilize a structure known as the “primal graph” introduced

in the work by Shtrichman and Strichman [SS10]. In the primal graph, each node

represents a variable that appears in the specification, and an edge exists between

two nodes if and only if the corresponding variables share a clause. By leveraging the

information provided by the primal graph, we can determine the distance between

variables and use it to cluster the variables in the set Y into disjoint subsets.

By employing the distance metric in the primal graph, we can identify variables

that share common clauses or have a higher degree of interconnectedness. These

variables are more likely to be related and exhibit higher cohesion. Clustering them

together allows us to capture their inherent dependencies and to learn candidate

functions more effectively.

Algorithm to cluster output variables. ClusterY Algorithm 5 presents the

subroutine ClusterY, it takes formula the φ(X,Y), k : an edge distance parameter,

s : maximum allowed size of a cluster of Y variables, and U : list of unate and

uniquely defined Y variables, and it returns a list of all subsets of Y that would be

learned together. ClusterY assumes access following subroutine:

1. kHopNeighbor, which takes a graph, variable y, and an integer k as input, and

returns all variables within distance k of y in the graph.

2. RemoveNode, which takes a graph and a vertex y as input, and removes the

vertex y along with its incident edges from the graph.

44

Algorithm 5 ClusterY(φ(X,Y),k,s,U)
1: graph = ∅
2: for each clause of φ(X,Y) do
3: if 〈yi, yj〉 pair in clause then
4: if yi 6∈ U and yj 6∈ U then
5: AddEdge(graph,yi,yj)
6: subsetY = ∅
7: for yi ∈ Y do
8: while k ≥ 0 do
9: chunk ← kHopNeighbor(graph,yi,k)

10: if size(chunk) ≤ s then
11: break
12: k ← k − 1

13: subsetY ← subsetY.add(chunk)
14: for yj ∈ chunk do
15: RemoveNode(graph,yj)
16: return subsetY

We first construct a primal graph G with existentially quantified Y variables as

nodes, and if yi and yj share a clause, then there is an edge between them. For a

variable yi in given sequence {y1, . . . , y|Y |}, we cluster all the variables that are at

≤ k distance from yi in the graph, where k is a edge distance threshold. Once, such

a subset of variables Y is found, remove them as nodes along with their edges in

order to find disjoint subsets.

ClusterY first creates a graph graph with Y \ U as vertex set and edges between

variables yi and yj that share a clause in φ(X,Y). ClusterY then calls subroutine

kHopNeighbor for each variable yi. The set of variables returned by kHopNeighbor

is stored as chunk. If the size of chunk is greater than s, ClusterY reduces the value

of k by one at line 12, and calls kHopNeighbor again with the updated value of k.

Otherwise, ClusterY adds chunk to subsetY at line 13. Finally at line 15, ClusterY

removes the nodes corresponding to each variable of chunk from graph.

Now, let us discuss the multi-classification approach for learning approximately

correct candidates. We could use the following strategy:

• Identify determined features and partition the set of remaining Y variables

into disjoint subsets,

45

• Use a multi classifier to learn candidate function for each partition.

In the multi-classification approach, the candidate function for a variable yi

within a selected subset is obtained by taking the disjunction of all paths from

the root to a leaf node with a label of yi equal to 1. Additionally, we update the

partial dependency relation by setting yi ≺d yj for all variables yj that occur in the

candidate function fi.

The feature set for learning a specific subset includes a variable yj only if yj 6≺d yi

for every variable yi in the subset. This ensures that variables depending on other

variables within the same subset are excluded from the feature set during the learning

process, promoting independence among the variables in the subset. Let’s consider

a scenario with two different subsets: y1, y2 and y3, y4. Suppose we have the partial

dependency y1 ≺d y3. In this case, when learning the candidate functions for subset

y3, y4, the feature set would include the variables X, y2.

To illustrate the multi-classification based approach, let’s consider an example.

We have a scenario with two input variables X = x1, x2 and two output variables

Y = y1, y2 in the formula ∃Y φ(X,Y). Figure 5.2 depicts the learned decision tree,

with labels y1, y2 and features x1, x2.

Assuming that neither y1 nor y2 are determined features, we would expect to have

22 = 4 classes to learn candidates for the two output variables together. However,

as shown in Figure 5.2, the decision tree classifies the labels into only 3 classes,

denoted as 〈01, 10, 11〉.

In this example, the candidate function f1 corresponds to y1 and is obtained by

taking the disjunction of paths from the root to leaf nodes with a label of y1 equal

to 1. In this case, the paths corresponding to classes 10 and 11 are selected. Hence,

the candidate function for y1 is ψ1 = (¬x1 ∧ x2) ∨ (x1).

Similarly, the candidate function f2 for y2 is derived by considering the paths

from the root to leaf nodes with a label of y2 equal to 1. In this example, the paths

corresponding to class 01 and 11 are chosen, resulting in the candidate function

f2 = (¬x1 ∧ ¬x2) ∨ (x1).

46

x1

x2 11

01 10

0 1

0 1

Figure 5.2: Multi Classification: Learned decision tree with label y1, y2 and features
x1, x2.

Algorithm 6 CandidateSkF(Σ,φ(X,Y),f ,chunk,dependson)
1: featset ← X
2: D ← ∅
3: for each yj ∈ Y do
4: for each yi ∈ chunk do
5: if yi ∈ dependson[yj] then
6: D ← D ∪ yj
7: for each yj ∈ Y\chunk do
8: if yj 6∈ D then
9: featset ← featset ∪ yj

10: feat, lbl ← Σ↓featset, Σ↓chunk
11: dt ← CreateDecisionTree(feat,lbl)
12: for each yi ∈ chunk do
13: for each l ∈ LeafNodes(dt) do
14: if Label(yi,l) =1 then
15: π ← Path(dt,root,l)
16: fi ← fi ∨ π
17: for each yj ∈ fi do
18: dependson[yi] ← dependson[yi] ∪yj
19: return f , dependson

Algorithm to Learn Candidates via Multi Classification. Algorithm 6 presents

the multi-classification based learning approach called CandidateSkF. It takes a set

Σ of samples, F (X,Y), Ψ: a candidate function vector, chunk: the set of variables

to learn candidates, and dependson: a partial dependency vector as input, and finds

the candidates corresponding to each of the variables yi in chunk. CandidateSkF

assumes access to subroutines CreateDecisionTree and Path, which are same as in

Algorithm 4. The following are the additional subroutines used by CandidateSkF:

47

1. LeafNodes, which takes a decision tree dt as an input and returns a list of leaf

nodes of dt.

2. Label(yi, l), which takes a variable yi and a leaf node l as input, and returns 1

if the class label corresponding to the node l has value 1 at the ith index.

CandidateSkF starts off by initializing the set featset of features with the set X

of input variables. It then attempts to find a list D of variables yj such that yj ≺d yi

where yi belongs to chunk. Next, CandidateSkF adds Y \D to featset, and creates a

decision tree dt using samples from Σ over featset to learn the chunk variables. For

a leaf node l of dt, if Label(yi, l) returns 1, then fi is updated with the disjunction

of the formula returned by subroutine Path. Finally, CandidateSkF iterates over all

yj occurring in fi to add them to the list dependson[yi].

Chapter 6

Verification and Repairing of

Candidates

6.1 Verification

In our machine learning-based approach, we aim to learn an approximately correct

function vector. While machine learning techniques are highly efficient, the synthe-

sized functions are only approximations and may not guarantee the correctness of

the underlying specification. Hence, it becomes essential to perform a verification

check to ensure the accuracy of the candidate function vector.

The important question then arises: how do we verify the correctness of the

candidate function vector?

Pivotal

Insights

We perform a simple SAT call to verify the correctness of synthe-

sized function vector.

The goal is to determine if there exists an input valuation for X such that,

when using the corresponding function values for each yi ∈ Y , the formula φ(X,Y)

evaluates to false, even though there exists a different valuation of Y that satisfies

φ(X,Y). In other words, we want to identify if there are any cases where the function

vector produces incorrect values for Y , leading to a false evaluation of φ(X,Y).

49

The verification query constructs an error formula E(X,Y, Y ′) as follows [JSC+15]:

E(X,Y, Y ′) := φ(X,Y) ∧ ¬φ(X,Y ′) ∧ (Y ′ ↔ F (X)) (6.1)

In error formula 6.1, we introduce a new set of variables Y ′ such that |Y ′| = |Y |.

In the second and third term of error formula 6.1, we have replaced Y by Y ′ in the

specification and set the Y ′ are set as candidate functions. The term (Y ′ ↔ F (X))

reperesnts that (y′1 ↔ f1), . . . , (y
′
|Y | ↔ f|Y |). Note that input X is same in first and

second term in the formula.

If the error formula E(X,Y, Y ′) is unsatisfiable, it indicates that the candi-

date function vector is indeed the required function vector. On the other hand,

if E(X,Y, Y ′) is satisfiable, the solution of E(X,Y, Y ′) can be used to identify and

refine the erroneous functions within the candidate function vector.

6.2 Repair of Candidates

The repair strategy is guided by the understanding that the candidate function

vector obtained during the candidate learning phase is an approximation and may

contain errors. Candidates undergo repair only when verification check is failed,

that is, when error formula (Formula 6.1) is satisfiable. Let us assume that σ is

a satisfying assignment of E(X,Y, Y ′) and referred to as counterexample for the

current candidate function vector f . When repairing the candidate function vector,

there are two crucial questions to address:

• Among the candidate functions corresponding to each output variable yi,

which one(s) need to be repaired in order to resolve the counterexample?

• Once we have identified the set of candidate functions that require repair, how

can we effectively repair them while considering their interdependencies?

In order to identify and implement a series of minor repairs to correct the erring

functions, we rely on two key techniques: fault localization and repair synthesis.

50

6.2.1 Fault Localization

Pivotal

Insights

We introduce the use of MaxSAT solvers to identify a minimal set

Y variables whose corresponding candidate functions need to be

repaired in order to resolve the counterexample.

Consider the following example to illustrate the need for an intelligent technique

to identify candidates for repair. Let’s take σ := 〈x1 ↔ 1, x2 ↔ 1, y1 ↔ 1, y2 ↔

1, y′1 ↔ 0, y′2 ↔ 0〉 as an instance. Here, y′i represents the output values produced

by the candidate functions with the given input valuation, while yi represents one

of the valid output valuations for the inputs, where the specification φ is to True.

In this case, we observe that the candidate function vector is incorrect, as the

expected output values y1 and y2 should be 1, but the candidate functions produce

output values y′1 and y′2 of 0. Therefore, it is necessary to identify the candidate

functions that need to be repaired to correct this inconsistency.

At the first glance, we might consider repairing the candidates for which yi is not

the same as y′i in σ. In the previous example, this would lead us to repair both f1

and f2 in order to fix σ. However, this approach may result in unnecessary repairs

and potentially steer us away from the correct candidate function vector.

To understand it better, let’s consider the fact that the underlying specification

is a relational specification that is for a given input valuation, there can be multiple

valid output valuations for which the specification evaluates to True. In our example,

for the input valuation x1 ↔ 1, x2 ↔ 1, one possible output valuation could be y1 ↔

0, y2 ↔ 1. In this case, we would not want to repair f1 since it correctly produces

the desired output. But, we don’t know in advance whether such counterexamples

like σ̂ := 〈x1 ↔ 1, x2 ↔ 1, y1 ↔ 0, y2 ↔ 1, y′1 ↔ 0, y′2 ↔ 0〉 exist or not.

To identify the initial candidates for repair, we aim to find a counterexample

σ and analyze its vicinity. Our goal is to identify a small number of functions

(corresponding to Y variables) that require changes in their outputs for the formula

to behave correctly on σ. We strive to preserve the current outputs of most functions

51

(corresponding to Y variables) on σ while ensuring the satisfaction of the formula.

To tackle this problem, we formulate it as a partial MaxSAT query. In a given

CNF formula, we classify certain clauses as hard constraints, which must be satisfied,

and the remaining clauses as soft constraints. The objective of partial MaxSAT is to

find an assignment that satisfies all hard constraints while maximizing the number

of satisfied soft constraints. We construct the query as follows:

• Hard constraints: φ(X,Y) ∧ (X ↔ σ[X])

• Soft constraints: (Y ↔ σ[Y ′])

All Y variables whose valuation constraint (Y ↔ σ[Y ′]) does not hold in the

MaxSAT solution are identified as erring functions that may need to be repaired.

The Y variables corresponding to which the MaxSAT solver had to drop the soft

constraint to come up with a solution that satisfies all hard constraints, the functions

corresponding to such Y variables needed to be repaired.

However, using partial MaxSAT might lead to increase in number of repair iter-

ation due to lack of incorporating interdependencies among candidates.

Let us illustrate the need for a dependency-aware approach by considering an

example. Suppose we have X = x1, x2 and Y = y1, y2 with the specification

φ(X,Y) = (y1 ∨ y2) ∧ (¬y1 ∨ ¬y2) in ∃Y φ(X,Y). Let the candidate functions

be f1 = 1 and f2 = 1, and the total order be y1, y2.

To identify a candidate for repair, we invoke MaxSAT with the hard constraints

φ(X,Y) ∧ (X ↔ σ[X]) and the soft constraints (y1 ↔ 1) ∧ (y2 ↔ 1), where σ is

a satisfying assignment of the error formula. Assuming that either y1 or y2 can be

flipped to fix the counterexample σ, let us assume that MaxSAT does not satisfy

the soft constraint (y2 ↔ 1), selecting f2 for repair.

However, we encounter a problem. Since y2 is not allowed to depend on y1, we

cannot fix y2 without repairing y1. Thus, to fix the counterexample σ, we cannot

repair f2 in this repair iteration, requiring an additional iteration. This situation

could have been avoided if f1 had been selected for repair before f2 because y1 is

allowed to depend on y2.

52

The use of MaxSAT queries in determining repair candidates fails to consider

these dependencies, resulting in a larger number of unnecessary repairs. To address

this issue, we need a dependency-aware identification of repair candidates.

Lexicographic MaxSAT for Dependency-Aware Fault Localization To ad-

dress the problem of identifying repair candidates with consideration for dependen-

cies, we can use a lexicographic partial MaxSAT, denoted as LexMaxSAT. Lex-

MaxSAT is a variant of partial MaxSAT that incorporates a preference order for

satisfying soft constraints [IMM18]. By using LexMaxSAT, we can significantly re-

duce the number of iterations required to fix a counterexample.

Pivotal

Insights

We propose the use of lexicographic MaxSAT to identify erring

candidates while considering dependencies among candidate func-

tions. Lexicographic MaxSAT is a variant of MaxSAT that prior-

itizes soft constraints in a lexicographic order.

In LexMaxSAT, we encode the problem as a query with two components: (i) hard

constraints, which include φ(X,Y) ∧ (X ↔ σ[X]), and (ii) soft constraints, which

include (Y ↔ σ[Y ′]). The soft constraints are ordered based on the TotalOrder of

the variables. By utilizing LexMaxSAT, we can achieve a more efficient identifica-

tion of repair candidates, leading to a reduced number of iterations required to fix

counterexamples.

6.2.2 Repair Synthesis

Pivotal

Insights

We utilize unsatisfiability cores obtained from the infeasibility

proofs, which capture the reasons why the current candidate func-

tions fail to satisfy the specification, to construct a good repair.

Let’s consider a counterexample: σ := 〈x1 ↔ 1, x2 ↔ 1, y1 ↔ 0, y2 ↔ 1, y′1 ↔

0, y′2 ↔ 0〉. We assume that we have identified function f2 as needing repair. One

53

potential repair could be the following: if x1 and x2 are 1, and y1 is 0, then y2 needs

to be 0. In other words, if x1 ∧ x2 ∧ ¬y1, then y2 should be 0. However, this repair

would only address the specific counterexample σ and would not generalize to a set

of potential counterexamples.

Let’s denote the literals that appear in the “if” condition as β. In this example,

β is 〈x1, x2,¬y1〉. Generally, we aim to keep β as small as possible to generalize

over counterexamples. We rely on unsatisfiable cores to identify the reasons why

a particular function needs repair, and we use extracted reasons to construct β

formulas for function repair.

Let yk be the variable corresponding to the erring function, fk, identified to repair

with respect to the counterexample σ. To synthesize a repair for the function, we

apply a proof-guided strategy and construct a formula Gk(X,Y):

Gk(X,Y) = (yk ↔ σ[y′k]) ∧ φ(X,Y) ∧ (X ↔ σ[X]) ∧ (Ŷ ↔ σ[Ŷ])

where Ŷ ⊂ Y and Ŷ = {TotalOrder[index(yk) + 1], · · · ,TotalOrder[|Y |]} (6.2)

Intuitively, formula Gk attempts to find the reason behind, why with the current

valuations of input variables, fk should not return the current output in order to

meet the specification?. Now, there can be cases regarding satisfiability of Gk.

• If G(X,Y) is unsatisfiable, it implies that there exists a reason within Ŷ that

can explain the discrepancy between the specification and the current function.

In this case, we construct a repair formula, β, as a conjunction over literals in

the unsatisfiable core from the proof of infeasibility. If the erring value of the

function is true, we strengthen the function fk by conjoining it with the repair

formula (fk ← fk ∧¬β); otherwise, we weaken the function fk by disjoining it

with the negation of the repair formula (fk ← fk ∨ β).

• If G(X,Y) is satisfiable, it implies that the current function fk of yk is consis-

tent with valuation of X and Ŷ , and the reason of the discrepancy lies outside

54

β1

β2
1

0 p1

p21

1 0

1 0

1 0

01

1 0

Can reorder
β1, β2

Can reorder
p1, p2

Figure 6.1: Repair of candidates: Moving from decision tree to two level decision list.

Ŷ (or the specification is already met due to corrections to other functions

in the previous loop iterations). In such a case, we attempt to find yt /∈ Ŷ ,

whose function ft is not consistent with current fk, and it adds ft to the list

of candidate functions that need to be repair.

The ordering of the variable is important; G(X,Y) does not constrain Y variables

that depend on yk to avoids cyclic dependencies between variables.

Let’s delve deeper into the repair procedure and understand it from the perspec-

tive of machine learning. Recall that the learned candidates are one-level decision

lists, such as “if p1 then 1, else if p2 then 1, else 0,” where p1 and p2 can be in-

terchanged. Now, the repair iterations essentially add another level to the decision

list, transforming it from a one-level to a two-level decision list as illustrated in

Figure 6.1.

In each repair iteration, a β decision node is added to the classifier. These β

repair nodes and the path nodes p can be interchanged. However, we cannot reorder

them among themselves as we performed repairs on top of the candidate functions.

Eventually, we obtain synthesized functions represented as a two-level decision list.

Falling back on Self Substitution Some functions are difficult to learn through

data and thereby requiring a long sequence of incremental repairs for convergence.

To handle such scenarios, we make the following observation: though synthesizing

functions via self-substitution [FTV16]. Self-substitution is defined as follows:

Theorem 6.1 ([FTV16]). Let ϕ = ∃yφ(X, y) be a 2-QBF formula. Then, ∃yφ(X, y)

is logically equivalent to φ(X,φ(X, 1)), and is also logically equivalent to φ(X,¬φ(X, 0)).

55

Note that synthesizing functions via self-substitution can lead to an exponential

blowup in the worst case, it is inexpensive if the number of variables synthesized

via this technique is small. We use this observation to quickly synthesize a function

for an erring variable if we detect its candidate function is poor (detected by com-

paring the number of times it enters into repair iterations against an empirically

determined threshold). Of course, this heuristic does not scale well if the number of

such variables is large.

Algorithm to Repair Candidates. Algorithm 7 presents RepairSkF algorithm.

RepairSkF is invoked with a counterexample σ.

Algorithm 7 RepairSkF(φ(X,Y),F , σ,TotalOrder)
1: H ← φ(X,Y) ∧ (X ↔ σ[X]); S ← (Y ↔ σ[Y ′])
2: Ind← MaxSATList(H,S)
3: for yk ∈ Ind do
4: Ŷ ← {TotalOrder[index(yk) + 1], · · · ,TotalOrder[|Y |]}
5: if CheckSubstitute(yk) then
6: fk ← DoSelfSubstitution(φ(X,Y), yk, Y \ Ŷ)
7: else
8: Gk ← (yk ↔ σ[y′k]) ∧ φ(X,Y) ∧ (X ↔ σ[X]) ∧ (Ŷ ↔ σ[Ŷ])
9: ret, ρ← CheckSat(Gk)

10: if ret = UNSAT then
11: C ← FindCore(Gk)
12: β ←

∧
l∈C
ite((σ[l] = 1), l,¬l)

13: fk ← ite((σ[y′k] = 1), fk ∧ ¬β, fk ∨ β)
14: else
15: for yt ∈ Y \ Ŷ do
16: if ρ[yt] 6= σ[y′t] then
17: Ind← Ind.Append(yt)

18: σ[yk]← σ[y′k]

19: return F

RepairSkF is invoked with a counterexample σ. RepairSkF first performs fault

localization to find the initial set of erring candidate functions; to this end, it calls

the MaxSATList subroutine (line 2) with φ(X,Y)∧ (X ↔ σ[X]) as hard-constraints

and (Y ↔ σ[Y]) as soft-constraints. MaxSATList employs a MaxSAT solver to find

the solution that satisfies all the hard constraints and maximizes the number of

satisfied soft constraints, and then returns a list (Ind) of Y variables such that for

56

each of the variables appearing in (Ind) the corresponding soft-constraint was not

satisfied by the optimal solution returned by MaxSAT solver.

Since candidate function corresponding to the variables in Ind needs to refine,

RepairSkF now attempts to synthesize a repair for each of these candidate functions.

Repair synthesis loop (lines 3–19) starts off by collecting the set of Y variables, Ŷ ,

on which yk of Ind can depend on as per the ordering constraints (line 4). Next, it

invokes the subroutine CheckSubstitute, which returns True if the candidate function

corresponding to yk has been refined more than a chosen threshold times (fixed to

10 in our implementation), and the corresponding decision tree constructed during

execution CandidateSkF has exactly one node.

If CheckSubstitute returns true, RepairSkF calls DoSelfSubstitution to perform self-

substitution. DoSelfSubstitution takes a formula φ(X,Y), an existentially quantified

variable yk and a list of variables which depends on yk and performs self substitution

of yk with constant 1 in the formula φ(X,Y)[JSC+15].

If CheckSubstitute returns false, RepairSkF attempts a proof-guided repair for yk.

RepairSkF calls CheckSat in line 9 on Gk, which corresponds to formula 6.2: if Gk

is SAT, then CheckSat returns a satisfying assignment(ρ) of Gk in σ, else CheckSat

returns unsatisfiable in the result, ret.

1. If ret is UNSAT, we proceed to refine fk such that for fk(X ↔ σ[X], Ŷ ↔

σ[Ŷ]) = σ[yk]. Ideally, we would like to apply a refinement that generalizes

to potentially other counter-examples, i.e. solutions of E(X,Y, Y ′). To this

end, RepairSkF calls FindCore with Gk; FindCore returns the list of variables

(C) that occur in the clauses of UnsatCore of Gk. Accordingly, the algorithm

constructs a repair formula β as a conjunction of literals in σ corresponding to

variables in C (line 12). If σ[y′k] is 1, then fk is fk with conjunction of negation

of β and if σ[y′k] is 0, then fk is fk with disjunction of β.

2. If ret is SAT and ρ is a satisfying assignment of Gk, then there exists a function

vector such that the value of fk agrees with σ[yk] for the valuation of X and Ŷ

set to σ[X] and σ[Ŷ]. However, for any yt ∈ Y \Ŷ if σ[y′t] 6= ρ[y′t], then for such

57

a yt, the function corresponding to yt may need to refine . Therefore, RepairSkF

adds yt to list of candidates to refine, Ind. Note that since σ |= E(X,Y, Y ′),

there exists at least one iteration of the loop (lines 3– 18) where ret is UNSAT.

Part III

Recipe and Results for Functional

Synthesis

58

59

This part of thesis focuses on the recipe of functional synthesis, both with and

without explicit dependencies by using ingredients discussed in Part II of In Chap-

ter 7, we present the algorithm along with comprehensive experimental results for

Skolem synthesis, which involves functional synthesis without explicit dependencies.

Furthermore, Chapter 8 introduces the algorithm and provides detailed experimen-

tal results for Henkin synthesis, which involves functional synthesis with explicit

dependencies.

Chapter 7

Skolem Synthesis

In the previous chapter, as shown in Figure 7.1, we have discussed different ingre-

dients of the functional synthesis including preprocessing, generating data, learning

candidate functions, and verifying and repairing candidates. This chapter of thesis

put all these ingredients together to come-up with a data-driven approach called,

Manthan [GRM20, GSRM21] for Skolem synthesis.

Preprocessing ✓

Data Generation ✓

Learn Candidate
Functions ✓

Verify ✓ Repair ✓

Input R(X, Y)

Output F

No

Yes

Formal
Methods

Constrained
Sampling

Simple yet
Effective!

Machine
Learning

Figure 7.1: Manthan for Skolem synthesis.

Manthan begins by considering the specification φ(X,Y) and performs prepro-

cessing (Chapter 3) to identify unates and uniquely determined functions. Subse-

quently, Manthan utilizes constrained sampling to generate data (Chapter 4), which

61

is then used as input for a machine-learning algorithm to learn initial candidate

functions (Chapter 5). Additionally, Manthan capitalizes on advancements in auto-

mated reasoning and formal methods, relying on SAT and MaxSAT techniques to

identify faulty candidates and perform necessary repairs (Chapter 6).

7.1 Approach

Algorithm 8 showcases Manthan algorithm. Given a formula φ(X,Y) as input,

Manthan generates a Skolem function vector f as its output.

Manthan does multiclassification to learn candidate functions for a set of Y vari-

ables together 5. Hence, during the execution, Manthan considers predetermined

values for k and s. Here, k represents the maximum edge distance used to cluster

the Y variables, while s denotes the maximum number of Y variables that can be

jointly learned.

Algorithm 8 Manthan(φ(X,Y))
1: f ← {f1 = ∅, . . . , f|Y | = ∅}
2: dependson ← {}
3: U, f , dependson ← UniDef(φ(X,Y),f ,dependson)
4: Σ← GetSamples(φ(X,Y))
5: subsetY ← ClusterY(φ(X,Y),k,s,U)
6: for each chunk ∈ subsetY do
7: f , dependson ← CandidateSkF(Σ,φ(X,Y), f , chunk, dependson)
8: TotalOrder ← FindOrder(dependson)
9: repeat

10: E(X,Y, Y ′)← φ(X,Y) ∧ ¬φ(X,Y ′) ∧ (Y ′ ↔ f)
11: ret, σ ← CheckSat(E(X,Y,Y’))
12: if ret = SAT then
13: ind ← FindRepairCandidates(φ, σ,TotalOrder)
14: for yk ∈ ind do
15: f ← RepairSkF(φ, σ,f ,TotalOrder)
16: until ret = UNSAT
17: return f

Algorithm 8 outlines Manthan. At line 3, the algorithm begins by extract-

ing Skolem functions for the unates and uniquely defined variables in the formula

φ(X,Y). The resulting set U comprises Y variables that either possess unate char-

62

acteristics or have unique Skolem functions. Note that if U = Y , that is, if all Y

variables are either unate or uniquely defined, then Manthan terminates after UniDef.

To generate the required samples, Manthan proceeds to line 4. Subsequently, at

line 5, Manthan calls the subroutine ClusterY to cluster the Y variables not present

in U . The subroutine returns a list denoted as subsetY, representing various subsets

of Y variables for which candidate functions will be learned jointly.

The learning process for each subset is executed by calling CandidateSkF at line 7.

Additionally, CandidateSkF updates the dependencies among the Y variables based

on the learned candidate functions. To establish a total order of the Y variables

according to their dependencies, Manthan determines the order TotalOrder at line 8.

Next, Manthan verifies the satisfiability of the error formula E(X,Y, Y ′). If

E(X,Y, Y ′) is found to be satisfiable, the algorithm proceeds to line 13 and calls

the subroutine FindRepairCandidates to identify the list of candidates that require

repair. Subsequently, at line 15, the algorithm invokes the subroutine RepairSkF to

repair the candidates. This process continues until the error formula E(X,Y, Y ′)

becomes unsatisfiable. Finally, Manthan returns a Skolem function vector.

We now illustrate Manthan through an example.

Example 7.1. Let X = {x1, x2}, Y = {y1, y2, y3, y4} in ∃Y φ(X,Y) where φ(X,Y)

is (x1 ∨ x2 ∨ y1) ∧ (x2 ∨ ¬y1 ∨ y2) ∧ (y3 ∨ y4) ∧ (¬y3 ∨ ¬y4).

Finding Unate and Unique Functions FindUniqueDef finds that y4 is defined

by {x1, x2, y1, y2, y3} and returns the Skolem function f4 = ¬y3. We get Z =

{y4} as a determined set.

Learning Candidate Functions Afterwards, Manthan proceeds to generate train-

ing data by sampling (Figure 7.2). The goal is to cluster the variables Y \Z =

y1, y2, y3 into different groups to be learned jointly. In this case, as y1 and

y2 share a clause, the clustering subroutine, ClusterY, returns the clusters

y1, y2, y3.

Manthan then attempts to learn candidate Skolem functions f1 and f2 together

63

by constructing a decision tree (Figure 7.3). The construction of the decision

tree uses the samples from x1, x2, y3 as features and the samples from y1, y2 as

labels. To synthesize the candidate function f1, a disjunction is taken over all

paths that end in leaf nodes with label 1 at index 1 in the learned decision tree.

In Figure 7.3, f1 is synthesized as (x1 ∨ (¬x1 ∧ ¬x2)). Similarly, considering

paths to leaf nodes with label 1 at index 2, we obtain f2 = (¬x1 ∧ ¬x2) ∨

(¬x1 ∧ x2), which simplifies to ¬x1.

To predict y3, samples from x1, x2, y1, y2 are used. By considering the path to

the leaf node of the learned decision tree with label 1, we obtain f3 = x2.

At the end of CandidateSkF, we have f1 := (x1∨(¬x1∧¬x2)), f2 := ¬x1, f3 :=

x2 , and f4 := ¬y3. Let us assume the total order returned by FindOrder is

TotalOrder = {y4, y3, y2, y1}.

Verifiying and Repairing Candidates We construct the error formula, E(X,Y, Y ′) =

φ(X,Y) ∧ ¬φ(X,Y ′) ∧ (Y ′ ↔ f), which is found to be satisfiable (SAT) with

the counterexample σ = 〈x1 ↔ 1, x2 ↔ 0, y1 ↔ 0, y2 ↔ 1, y3 ↔ 0, y4 ↔ 1,

y′1 ↔ 1, y′2 ↔ 0, y′3 ↔ 0, y′4 ↔ 1〉.

The subroutine FindRepairCandidates is called, and it invokes LexMaxSAT

with φ(X,Y) ∧ (x1 ↔ σ[x1]) ∧ (x2 ↔ σ[x2]) as hard constraints and ((y1 ↔

σ[y′1]), 4) ∧ ((y2 ↔ σ[y′2]), 3) ∧ ((y3 ↔ σ[y′3]), 2) ∧ ((y4 ↔ σ[y′4]), 1) as soft

constraints. The preference order of the soft constraints is determined by

their weights. FindRepairCandidates returns ind = y2.

Repair synthesis begins for f2 by checking the satisfiability of G2 = φ(X,Y)∧

(x1 ↔ σ[x1]) ∧ (x2 ↔ σ[x2]) ∧ (y1 ↔ σ[y′1]) ∧ (y2 ↔ σ[y′2]). The formula G2

is found to be unsatisfiable, and Manthan proceeds to call FindCore, which

identifies variable y1 as the core. This indicates that the constraints (y1 ↔

σ[y′1]) and (y2 ↔ σ[y′2]) are not jointly satisfiable in G2.

As the output f2 for the assignment σ needs to change from 0 to 1, f2 is

repaired by disjoining it with y1, resulting in f2 := ¬x1 ∨ y1 as the updated

64

x1 x2 y1 y2 y3

0 0 1 1 0
0 1 0 1 1
1 1 1 0 1

Figure 7.2: Skolem synthesis by Man-
than example: Data generation for φ.

x1

x2 10

11 01

0 1

0 1

Figure 7.3: Learning candidates for
y1, y2 with feature set {x1, x2, y3}.

candidate.

For the revised candidate vector f , the error formula becomes unsatisfiable

(UNSAT), indicating a successful repair. Thus, f is returned as a Skolem

function vector.

Remark 7.2. If the subroutine FindRepairCandidates had employed regular (un-

weighted) MaxSAT instead of lexicographic MaxSAT, it might have returned Ind =

y1. However, considering the total order TotalOrder, where y1 occurs after y2,

the formula G1 would not be allowed to impose constraints on y2. Therefore,

G1 = φ(X,Y) ∧ (x1 ↔ σ[x1]) ∧ (x2 ↔ σ[x2]) ∧ (y1 ↔ σ[y′1]).

With the counterexample σ, formula G1 is found to be SAT. As a result, Manthan

would need to find another repair candidate (in this case y2), thus failing to resolve

the counterexample σ in a single repair iteration. Consequently, Manthan mitigates

the number of repair iterations by employing lexicographic MaxSAT.

It is important to note that each phase of Manthan incorporates several opti-

mizations, as outlined below:

1. Preprocessing: In this phase (discussed in Chapter 3), Manthan identifies

uniquely determined variables and their corresponding functions. Rather than

eliminating these variables, Manthan retains them, leading to optimization in

subsequent steps.

2. Candidate learning: During candidate learning (discussed in Chapter 5), Manthan

employs multi-classification techniques to learn the candidate functions. This

optimization enhances the efficiency and accuracy of the learning process.

65

3. Use of lexicographic MaxSAT: Manthan utilizes lexicographic MaxSAT (dis-

cussed in Chapter 6) for the identification of erring candidates. This approach

ensures that repair candidates are prioritized based on a preference order,

reducing the number of repair iterations required.

Henceforth, we will distinguish between two different variants or versions of

Manthan [GRM20]: one without the optimizations and another with the optimiza-

tions. The latter version will be referred to as Manthan2 [GSRM21].

7.2 Experimental Results

We conducted experiments using the prototype implementation of Manthan1, which

demonstrated its scalability in addressing the challenge at hand.

We will initially present the results obtained using Manthan and subsequently

compare the performance of Manthan2 against Manthan, highlighting the impact and

significance of each optimization. We now discuss the experimental set.

Benchmarks: We performed experiments on the union of all the benchmarks em-

ployed in the most recent works [AAC+19, ACG+18],which includes 609 benchmarks

from different sources: Prenex-2QBF track of QBFEval-17[qbfa], QBFEval-18[qbfb],

disjunctive[ACJS17], arithmetic[TV17] and factorization[ACJS17]. QBF competi-

tion benchmarks are consists of controller synthesis, reactive synthesis, game strat-

egy synthesis. Arithmetic benchmarks are of simple arithmetic functions such as

ceil, floor, max, min, and in factorization benchmarks, a system needs to compute

the factors of the given input.

Setup: We used Open-WBO [MML14] for our MaxSAT queries and PicoSAT [Bie08]

to compute UNSAT cores. We used PicoSAT for its ease of usage and we expect

further performance improvements by upgrading to one of the state of the art SAT

solvers. We have used the Sklearn[skl] Python library to create decision trees while
1Manthan is available open-sourced at https://github.com/meelgroup/manthan

66

learning candidates. We have also used ABC [LG] to represent and manipulate

Boolean functions. To allow for the input formats supported by the different tools,

we use the utility scripts available with the BFSS distribution [ACG+18] to convert

each of the instances to both QDIMACS and Verilog formats.

All experiments were conducted on a high-performance computer cluster with

each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM, with

a memory limit set to 4GB per core. All tools were run in a single-threaded mode

on a single core with a timeout of 7200 seconds.

We used the PAR-2 score to compare different techniques, which corresponds to

the Penalized Average Runtime, where for every unsolved instance there is a penalty

of 2 × timeout. timeout was 7200 seconds. We generally use cactus plot to showcase

instances solved in which the number of instances are shown on the x-axis and the

time taken on the y-axis; a point (x, y) implies that a solver took less than or equal

to y seconds to find Skolem function of x instances on a total of 609 instances.

Tools: Manthan is compared with the state of the art synthesis tools, BFSS [ACG+18],

C2Syn [AAC+19], BaFSyn [CFTV18] and the current state of the art 2-QBF solvers

CADET [RTRS18],CAQE [RT15] and DepQBF [LE17]. The certifying 2-QBF solver

produces QBF certificates, that can be used to extract Skolem functions [BJ11]. De-

velopers of BaFSyn and DepQBF confirmed that the tools produce Skolem function

for only valid instances, i.e. when ∀X∃Y φ(X,Y) is valid.

Experimental Evaluation: Manthan

The objective of our experimental evaluation was two-fold: to understand the impact

of various design choices on the runtime performance of Manthan and to perform

an extensive comparison of runtime performance vis-a-vis state of the art synthesis

tools. In particular, we sought to answer the following questions:

1. How does the performance of Manthan compare with state of the functional

synthesis engines?

67

2. How do the usage of different sampling schemes and the quality of samplers

impact the performance of Manthan?

3. What is the impact of candidate learning phase on the performance of Manthan?

4. What is the distribution of the time spent in each component of Manthan:

(i) preprocessing, (ii) data generation, (iii) candidate learning, (iv) verify and

repair?

5. How does employing self-substitution for some Skolem functions impact Manthan?

Our observations indicate that Manthan exhibits substantial improvements com-

pared to state-of-the-art tools. It successfully solves 356 benchmarks, while the

best-performing existing tool can only solve 280. Remarkably, Manthan resolves an

additional 60 benchmarks that none of the state-of-the-art tools could solve. To

provide a broader perspective on the runtime performance, techniques developed

over the past five years have been able to solve a range of 206 to 280 benchmarks,

representing a difference of 74. Consequently, Manthan contributes to a significant

increase of 76 benchmarks solved (from 280 to 356).

We also noted that the performance of Manthan is influenced by the choice of

sampling schemes and the underlying samplers. In our experiments, we found that

adaptive weighted sampling produces superior results compared to uniform sam-

pling. Moreover, we observed interesting trade-offs between the number of samples

and the minimum impurity decrease during candidate learning.

The diversity of our extensive benchmark suite provides a nuanced understand-

ing of the time distribution across different phases of Manthan, highlighting the

critical nature of each phase in determining its overall performance. Additionally,

we observed that Manthan demonstrates notable performance improvements with

self-substitution, reducing the number of repairs required.

68

0 50 100 150 200 250 300 350 400
Instances

0

1000

2000

3000

4000

5000

6000

7000

C
PU

-T
im

e(
s)

MANTHAN
CADET
BFSS
C2Syn

Figure 7.4: Skolem Synthesis: Manthan versus competing tools.

Table 7.1: Skolem Synthesis: No. of benchmarks solved by different tools.

Total BaFSyn CAQE DepQBF C2Syn BFSS CADET Manthan All Tools
609 13 54 59 206 247 280 356 476

Comparison with other tools

We now present performance comparison of Manthan with the current state of the

art synthesis tools, BFSS [ACG+18], C2Syn [AAC+19], BaFSyn [CFTV18] and

the current state of the art 2-QBF solvers CADET [RTRS18],CAQE [RT15] and

DepQBF [LE17]. The certifying 2-QBF solver produces QBF certificates, that can

be used to extract Skolem functions [BJ11]. Developers of BaFSyn and DepQBF

confirmed that the tools produce Skolem function for only valid instances, i.e. when

∀X∃Y φ(X,Y) is valid. Note that the current version of CAQE does not support

certification and we have used CAQE version 2 for the experiments after consultation

with the developers of CAQE.

We present the number of instances solved Table 7.1. Out of 609 benchmarks,

the most number of instances solved by any of the remaining techniques is 280 while

Manthan is able to solve 356 instances – a significant improvement over state of the

art. We will focus on top 4 synthesis tools from Table 7.1 for further analysis.

For a deeper analysis of runtime behavior, we present the cactus plot. An in-

teresting behavior predicted by cactus plot and verified upon closer analysis is that

69

Table 7.2: Skolem Synthesis: Manthan vs other state-of-the-art tools.

C2Syn BFSS CADET All Tools

Manthan Less 13 85 111 122
More 163 194 187 60

for instances that can be solved by most of the tools, the initial overhead due to a

multi-phase approach may lead to relatively larger runtime for Manthan. However,

with the rise in empirically observed hardness of instances, one can observe the

strengths of the multi-phase approach. Overall, Manthan solves 76 more instances

than the rest of the remaining techniques.

We present a pairwise comparison of Manthan with other techniques in Table 7.2.

The second row of the table indicates the number of instances solved by the respec-

tive technique in the corresponding column but not by Manthan, while the third row

represents the number of instances solved by Manthan but not by the corresponding

technique. Notably, Manthan solves 194, 163, and 187 instances that are not solved

by BFSS, C2Syn, and CADET, respectively.

Although BFSS and CADET solve more than 80 instances that Manthan fails

to solve, they do not provide complementary solutions. Specifically, there are only

121 instances that can be solved by either BFSS or CADET, but Manthan cannot

solve. Further analysis of Manthan’s performance on these instances revealed that

the decision trees generated by CandidateSkF were shallow, indicating significant

under-fitting. On the other hand, there are 130 instances that Manthan solves, but

neither CADET nor BFSS can solve. These instances exhibit high dependencies

between variables that Manthan can infer from the samples, enabling it to predict

effective candidate Skolem functions.

Akshay et al. [AAC+19] suggest that C2Syn is an orthogonal approach to BFSS.

Interestingly, Manthan solves 81 instances that cannot be solved by either C2Syn

or BFSS. Furthermore, when considering the instances that C2Syn and BFSS solve

together, there are 86 instances where Manthan fails to solve.

Overall, Manthan successfully solves 60 instances that none of the above-mentioned

70

state-of-the-art tools can handle, highlighting its superior performance and efficacy.

Impact of the sampling scheme

To evaluate the impact of adaptive sampling and the quality of distributions gener-

ated by underlying samplers, we extended Manthan with samples drawn from differ-

ent samplers for both adaptive and non-adaptive sampling. Specifically, we utilized

QuickSampler [DLBS18], KUS [SGRM18], UniGen2 [CMV14], and CMSGen[GSCM21].

However, KUS and UniGen2 could only produce samples for a limited number of

benchmarks (14 and 49 respectively) within a timeout of 3600 seconds. There-

fore, we have excluded KUS and UniGen2 from further analysis. We also exper-

imented with a naive enumeration of solutions using the off-the-shelf SAT solver,

CryptoMiniSat[Soo19]. It is worth noting that QuickSampler performed worse than

CMSGen for uniformity testing using Barbarik [CM19]. In our implementation, we

had to disable the validation phase of QuickSampler to generate a sufficient number

of samples within a reasonable timeframe. To statistically validate the intuition

described in Chapter 4, we performed adaptive sampling using CMSGen.

Table 7.3 presents the performance of Manthan with different samplers listed in

Column 1. Columns 2, 3, and 4 represent the number of instances solved during

the execution of respective phases: finding unates, candidates learning, and Repair.

Finally, Column 5 lists the total number of instances solved.

Table 7.3: Skolem Synthesis: Manthan with different samplers.

Sampler No. of instances solved #Solvedfinding unates candidates learning Repair
CryptoMiniSat 66 14 191 271
QuickSampler 66 28 181 275

CMSGen 66 51 228 345
wCMSGen 66 66 224 356

Two important findings emerge from Table 7.3: Firstly, as the quality of sam-

plers improves, the performance of Manthan also improves. Specifically, we observe

that with the enhancement in the quality of samples, Manthan solves more instances

71

in candidates learning. Secondly, we observe a significant increase in the number

of instances solved in candidates learning when using samples from wCMSGen. It is

important to note that the adaptive sampling scheme proposed in Chapter 4 should

be viewed as a proof of concept, and our results will encourage the development of

more sophisticated schemes.

Impact of candidate learning

To analyze the impact of different design choices in candidates learning, we analyzed

the performance of Manthan for different samples (1000, 5000 and 10000) generated

by GetSamples and for different choices of minimum impurity decrease (0.001, 0.005,

0.0005) to prune the decision tree while learning the candidate functions. Figure 7.5

shows a heatmap on the number of instances solved on each combination of the

hyper parameters; the closer the color of a cell is to the red end of the spectrum,

the better the performance of Manthan.

0.0005 0.001 0.005 0.01
Minimum impurity decrease

10000

5000

1000Nu
m

be
r o

f s
am

pl
es 248 263 287 292

228 280 321 317

242 272 306 298

Figure 7.5: Skolem Synthesis: Heatmap for Manthan with # of instances solved.
Skolem Synthesis: Heatmap for Manthan with # of samples vs decision tree

pruning. [Best viewed in colour].

At the first look, Figure 7.5 presents a puzzling picture: It seems that increasing

the number of samples does not improve the performance of Manthan. On a closer

analysis, we found that the increase in the number of samples leads to an increase

in the runtime of CandidateSkF but without significantly increasing the number of

instances solved during candidates learning. The runtime of CandidateSkF is depen-

72

Arithmetic
28

Disjunctive
64

Factorization
4

QBFEval
260

Union
356

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
ot

al
 ti

m
e

Refine
CandidateSkF

GetSamples
Preproces

Figure 7.6: Skolem synthesis: Fraction of time spent in different phases of Manthan over
different classes of benchmarks. [Best viewed in colour.].

dent on the number of samples and |Y |. On the other hand, we see an interesting

trend with respect to minimum impurity decrease where the performance first im-

proves and then degrades.

A plausible explanation for such a behavior is that with an increase in minimum

impurity decrease, the generated decision trees tend to underfit while significantly

low values of minimum impurity decrease lead to overfitting. Based on the above

observations, we set the value of minimum impurity decrease to 0.005 and set the

number of samples to (1) 10000 for |Y | < 1200, (2) 5000 for 1200 < |Y | ≤ 4000, and

(3) 1000 for |Y | > 4000.

Division of time taken across different phases

To analyze the time taken by different phases of Manthan across different categories

of the benchmarks, we normalize the time taken for each of the four core subroutines,

Preprocess, GetSamples, CandidateSkF, and RepairSkF, for every benchmark that was

solved by Manthan such that the sum of time taken for each benchmark is 1. We

then compute the mean of the normalized times across different categories instances.

Figure 7.6 shows the distribution of mean normalized times for different categories:

Arithmetic, Disjunction, Factorization, QBFEval, and all the instances.

The diversity of our benchmark suite shows a nuanced picture and shows that

the time taken by different phases strongly depends on the family of instances. For

73

example, the disjunctive instances are particularly hard to sample and an improve-

ment in the sampling techniques would lead to significant performance gains. On

the other hand, a significant fraction of runtime is spent in the CandidateSkF subrou-

tine indicating the potential gains due to improvement in decision tree generation

routines. In all, Figure 7.6 identifies the categories of instances that would benefit

from algorithmic and engineering improvements in Manthan’s different subroutines.

Impact of self-substitution

To understand the impact of self-substitution, we profile the behavior of candidate

Skolem functions with respect to number of repairs for two of our benchmarks;

pdtpmsmiim-all-bit and pdtpmsmiim. In Figure 7.8 and 7.7, we use histograms with

the number of candidate Skolem functions on y-axis and required number of repairs

on x-axis. A bar of height a i.e y = a at b i.e x = b in Figure 7.8 and 7.7 represents

that a candidate Skolem functions converged in b repairs. The histograms show

that only a few Skolem functions require a large number of repairs: the tiny bar

towards the right end in Figure 7.8 represents that for the benchmark pdtpmsmiim-

all-bit only 1 candidate Skolem function required more than 60 repairs whereas all

other candidate Skolem functions needed less than 15 repairs. Similarly, for the

benchmark pdtpmsmiim Figure 7.7 shows that only 1 candidate Skolem function

was refined more than 15 times, whereas all other Skolem functions required less

than 5 repairs. We found similar behaviors in many of our other benchmarks.

Based on the above trend and an examination of the decision trees corresponding

to these instances, we hypothesize that some Skolem functions are hard to learn

through data. For such functions, the candidate Skolem function generated from

the data-driven phase in Manthan tends to be poor, and hence Manthan requires

a long series of repairs for convergence. Since our repair algorithm is designed

for small, efficient corrections, we handle such hard to learn Skolem functions by

synthesizing via self-substitution. Manthan detects such functions via a threshold

on the number of repairs, which is empirically determined as 10, to identify hard to

74

Figure 7.7: Skolem synthesis: # of Skolem functions vs # of repairs for benchmark
pdtpmsmiim.

Figure 7.8: Skolem synthesis: # of Skolem functions vs # of repairs for benchmark
pdtpmsmiim-all-bit.

learn instances and sets them up for self-substitution.

In our experiments, we found 75 instances out of 356 solved instances required

self-substitution, and for 51 of these 75 instances, only one variable undergoes self-

substitution. Table 7.4 shows the impact of self-substitution for five of our bench-

marks: Manthan has significant performance improvement with self-substitution in

terms of the required number of repairs, which in turns affects the overall time.

Taking the case of the last benchmark, all the other Skolem functions for it were

synthesized earlier than 40 repair cycles, and the last 16 iterations were only needed

for 2 of the poor candidate functions to hit our threshold for self-substitution. Note

that self-substitution can lead to an exponential blowup in the size of the formula,

75

Table 7.4: Manthan : Impact of self substitution

Benchmarks
∃Y F (X,Y)

|X| |Y |
No. of Refinements Time(s)
Self-Substitution Self-Substitution

Without With Without With
kenflashpo2-all-bit 71 32 319 10 35.88 19.22

eijkbs1512 316 29 264 10 42.88 32.35
pdtpmsmiim-all-bit 429 30 313 10 72.75 36.08

pdtpmssfeistel 1510 68 741 10 184.11 115.07
pdtpmsmiim 418 337 127 56 1049.29 711.48

but it works quite well in our design as most Skolem functions are learnt quite well

in the candidates learning phase.

Experimental Evaluation: Manthan2

Manthan with different algorithmic improvements resulted in Manthan2, which led

to dramatic scalability. Let us discuss the empirical experimental in detail, in par-

ticular, our empirical evaluation sought answers to the following questions:

1. What is the improvement of Manthan2 over Manthan in terms additional in-

stances solved?

2. What is the impact on the performance of Manthan2 of each of the proposed

modifications? Specifically:

(a) Does Manthan2 benefit from extracting the unique Skolem functions via

unique function determination?

(b) Does retaining variables help Manthan2 to learn and repair candidates

efficiently?

(c) How does the candidate learning time improve with multi-classification?

(d) What is the impact of using LexMaxSAT to find candidates to repair?

Summary of Results Manthan2 [GSRM21] outperforms all the state-of-the-art

tools by solving 509 benchmarks, while Manthan [GRM20] solves 356 benchmarks—

an increase of 153 benchmarks over Manthan. It is worth emphasizing that the

76

increment of 153 is more than twice the improvement shown by Manthan over

CADET [Rab19], which could solve 280 benchmarks. There was an increase of

76 benchmarks in the number of solved benchmarks over the state-of-the-art due to

Manthan. With Manthan2, we see an increment of 153 benchmarks over Manthan,

which is more than the twice of 76, i.e we see ∼ 200% of performance improvement.

Moreover, we found that extracting unique functions is useful. There are 246

benchmarks out of 609 for which the ratio of Y variables being uniquely defined to

the total number of Y is greater than 95%, that is, Manthan2 could extract Skolem

functions for that many variables via unique function extraction. There is an increase

of 25 benchmarks in the number of solved instances by retaining variables in the

determined set to learn and repair candidates. Further, learning candidate functions

for a subset of variables together with the help of multi-classification reduces the

PAR-2 score from 3227.11 to 2974.91. Finally, we see a reduction of 100 seconds in

the PAR-2 score by LexMaxSAT.

Manthan2 vis-a-vis Manthan

Table 7.5 presents a pairwise comparison of Manthan2 with Manthan. The first col-

umn (PreRepair) presents the number of benchmarks that needed no repair iteration

to synthesize a Skolem function vector. The second column (Repair) represents the

number of benchmarks that underwent repair iterations. The third column (Self-

Sub) presents the number of benchmarks for which at least one variable had to

undergo self-substitution.

We investigate the reason for the increase in the number of benchmarks solved in

PreRepair, and observed that Manthan2 could extract Skolem functions via unique

function extraction for 90% of the variables for 274 out of these 385 benchmarks.

We also observed a significant decrease in the number of benchmarks that needed

repair iterations. Out of 124 benchmarks that underwent repair to synthesize a

Skolem function vector, only 33 benchmarks needed self-substitution with Manthan2,

whereas there are 75 out of 224 benchmarks that needed self-substitution with

77

Table 7.5: Skolem synthesis: Pairwise comparison of Manthan2 with Manthan

.
PreRepair Repair Self-Sub

Manthan 132 224 75
Manthan2 385 124 33

Table 7.6: Skolem Synthesis: Performance Summary over 609 benchmarks

C2Syn BFSS CADET Manthan Manthan2
Solved 206 247 280 356 509
PAR-2 9594.83 8566.87 7817.58 6374.39 2858.61

Manthan. The fact that fewer benchmarks required self-substitution to synthesize a

Skolem function vector shows that Manthan2 could find some hard-to-learn Skolem

functions.

Manthan2 vs. other competing tools. We compared Manthan2 with state-of-

the-art tools: C2Syn [AAC+19], BFSS [ACG+18], CADET [Rab19]. Figure 7.9

shows a cactus plot to compare the run-time performance of different tools.

As shown in Figure 7.9, Manthan2 significantly improves on the state of the art

techniques, both in terms of the number of instances solved and runtime perfor-

mance. In particular, Manthan2 is able to solve 509 instances while Manthan can

solve only 356 instances, thereby achieving an improvement of 153 instances in the

number of instances solved. To measure the runtime performance in more detail,

0 100 200 300 400 500 600
instances

0

1000

2000

3000

4000

5000

6000

7000

C
PU

tim
e

(s
)

Manthan2
Manthan
CADET
BFSS
C2Syn

Figure 7.9: Skolem synthesis: Manthan2 vis-a-vis state-of-the-art synthesis tools.

78

Table 7.7: Skolem synthesis: Manthan2 vs. other state-of-the-art tools.

C2Syn BFSS CADET Manthan All

Manthan2 Less 17 18 21 24 40
More 320 280 250 177 71

we computed PAR-2 scores for all the techniques. The PAR-2 scores for Manthan2

and Manthan are 2858.61 and 6374.39, which is an improvement of 3521.78 seconds.

Finally, we sought to understand if Manthan2 performs better than the union of all

the other tools. Here, we observe that Manthan2 solves 71 instances that the other

tools could not solve, whereas there are only 40 instances not solved by Manthan2

that were solved by one of the other tools.

Performance gain with each technical contribution

We now provide a detailed discussion on the impact and significance of each opti-

mization incorporated in Manthan2 compared to Manthan.

Impact of unique function extraction

We now present the impact of extracting Skolem function for uniquely defined vari-

ables. Figure 7.10 shows the percentage of uniquely determined functions on the

x-axis, and number of benchmarks on y-axis. A bar at x shows that y many bench-

marks had x% of Y variables that are uniquely defined. As shown in Figure 7.10,

there are 246 benchmarks out of 609 with more than 95% uniquely defined variables;

therefore, Manthan2 could extract Skolem functions corresponding to these variables

via unique function extraction. There are only 5 benchmarks where all the Y vari-

ables are defined. Our analysis shows that extracting unique functions significantly

reduces the number of Y variables that needed to be learned and repaired in the

subsequent phases of Manthan2.

We also analyzed the performance of Manthan2 with respect to unique function

size. Note that we measure size in terms of number of clauses, as the extracted

functions are in CNF. A benchmark is considered to have size S if the maximum

79

<10 (10-75] (75-90] (90-95] (95-100) =100
0

50

100

150

200

250

Nu
m

be
r o

f b
en

ch
m

ar
ks

145

18

118

82

241

5

Figure 7.10: Skolem Synthesis: # benchmarks by % ratio of uniquely defined output
variables.

Table 7.8: Skolem Synthesis: # benchmarks with different maximum function size for
uniquely defined variables. Function size is measured in terms of number of clauses in the
synthesized functions.

[1-10] (10-100] (100-1000] (> 1000)
#-benchmarks 209 203 61 136

size among all its unique functions is S.

Table 7.8 shows the number of benchmarks with different maximum unique

function sizes. There are 136 benchmarks for which at least one uniquely defined

variable has function size greater than 1000 clauses. In general, larger size functions

require more data to learn. Table 7.8 shows that Manthan2 was able to extract some

hard-to-learn Skolem functions.

An interesting observation is that there were 54 benchmarks that required self-

substitution for just one variable with Manthan. However, Manthan2 was able to

identify that particular variable as uniquely defined and the corresponding function

size was more than 3000 clauses. This observation emphasizes that it is important to

extract the functions for uniquely defined variables with large function size in order

to efficiently synthesize a Skolem function vector. Therefore, even if there is only

one variable with large function size, it is important to extract the corresponding

function—the primary reason for considering maximum size instead of mean or

median size in Table 7.8.

80

Impact of learning and repairing over determined features

As discussed in Chapter 3, either we can substitute the definitions of uniquely defined

variables in formula and reduce the Y variable size, or we can allow non-uniquely

defined variables to learn and repair candidates in terms of uniquely defined variable.

To this end, we did an experiment considering both the variant.

We now present the impact of variable retention. Manthan2 could solved 502

instances with a PAR-2 score of 3227.11 by retaining variables in the determined

set to use them further as features in learning and repairing the other candidates,

whereas, if we eliminate them, it could solve only 477 instances with a PAR-2 score

of 3523.28—a difference of 25 benchmarks.

It is worth mentioning that there are 370 instances that needed no repair itera-

tions (solved in PreRepair) to synthesize a Skolem function vector when learned with

determined features, whereas, if Manthan2 does not consider determined features,

we see a reduction of 6 benchmark in the number of instances solved in PreRepair.

Interestingly, despite having fewer determined features, it is crucial to utilize

them for learning and repairing candidates. For instance, let’s consider the bench-

mark query64_01, which has a total of 597 variables. Out of these, only five variables

can be identified as determined features. If we were to remove these five variables,

Manthan2 would be unable to synthesize a Skolem function vector even with more

than 150 repair iterations within the 7200-second timeout. However, by retaining

these determined features, Manthan2 can successfully synthesize a Skolem function

vector within just nine repair iterations, taking less than 400 seconds.

Efficacy of multi-classification and impact of LexMaxSAT

As discussed in Chapter 5, two essential questions arise when using multi-classification

to learn candidates for a subset of Y together: 1) how to divide the Y variables into

different subsets, and 2) how many variables should be learned together?

We experimented with following techniques to divide Y variables into subsets of

sizes 5 and 8, i.e, s = 5 or 8:

81

1. Randomly dividing Y variables into different disjoint subsets.

2. Clustering Y variables in accordance to the edge distance (parameter k) in the

primal graph: (i) using k = 2 (ii) using k = 3

Figure 7.11 and 7.12 shows a heatmap of PAR-2 scores for different configurations

of Manthan2. A lower PAR-2 score, i.e., a tilt towards the red end of the spectrum

in Figure 7.11 and 7.12, indicates a favourable configuration. The columns of Fig-

ure 7.11 correspond to different ways of dividing Y variables into different subsets:

(i) Random, (ii) k = 2, and (iii) k = 3. The rows of Figure 7.11 show results for dif-

ferent maximum sizes of such subsets, i.e., s = 5, 8. The number of instances solved

in each configuration is also shown in brackets. For comparison, the PAR-2 score of

Manthan2 with binary classification is 3227.11s and it solved 502 benchmarks.

Random k=2 k=3

s=
8

s=
5

3290.04 3189.81 3054.01

3562.09 3129.38 2974.91

(485) (493) (500)

(474) (496) (503)

2900

3000

3100

3200

3300

3400

PA
R2

 S
co

re

Figure 7.11: Skolem synthesis: Manthan2 with multi-classification and LexMaxSAT
turned off.

Let us first discuss Figure 7.11, i.e, the results without LexMaxSAT. Manthan2

shows a performance improvement with the proposed clustering-based approach in

comparison to randomly dividing Y variables into subsets. As shown in Figure 7.11,

we observed a drop in PAR-2 score when moving from random to cluster-based

partitioning of Y variables.

We see a better PAR-2 score with graph-based multi-classification compared to

binary classification, though the number of instances solved (except with k=3, s=5)

is lower than the number of instances solved with binary classification. This shows

82

that dividing Y variables using a cluster-based approach is effective in reducing the

candidate learning time. Manthan2 performs best with k = 3 and s = 5, where it

could solve 503 benchmarks (1 more instance than with binary classification) with a

PAR-2 score of 2974.9s, which amounts to a reduction of 252 seconds over the PAR-

2 score with binary classification. We observe a similar trend with LexMaxSAT

turned on (as shown in Figure 7.12).

Random k=2 k=3

s=
8

s=
5

3060.67 2999.07 2916.67

3018.55 3012.37 2858.61

(495) (503) (506)

(498) (501) (509)

2900

2950

3000

3050

3100

3150

3200

PA
R2

 S
co

re

Figure 7.12: Skolem synthesis: Manthan2 with multi-classification and LexMaxSAT
turned on.

Finally, let us move our attention towards the impact of LexMaxSAT, shown in

Figure 7.12. Manthan2 uses LexMaxSAT only if the number of candidates to repair

exceeds 50 times the number of candidates chosen by MaxSAT. A comparison of

Figure 7.11 and Figure 7.12 shows that with LexMaxSAT, Manthan2 solves at least

3 more benchmarks for all the configurations.

Manthan2 performs best when we turn on LexMaxSAT and set k = 3 as well as

s = 5. The results discussed in Chapter 7.2 were achieved with this configuration.

Chapter 8

Henkin Synthesis

Let’s transition from general-purpose monolithic functional synthesis to modular

design, where different components of synthesized systems depend on distinct sets of

inputs. In this context, synthesis with explicit dependencies involves handling De-

pendency Quantified Formulas (DQBF). As mentioned in Chapter 2, a formula ϕ is

considered a DQBF if it can be represented as ϕ : ∀x1 . . . xn∃H1y1 . . . ∃Hmymφ(X,Y),

where X = x1, . . . , xn, Y = y1, . . . , ym, and Hi ⊆ X represents the dependency set

of yi. This means that variable yi can only depend on the variables in Hi. Each Hi

is referred to as a Henkin dependency, and each quantifier ∃Hi is known as a Henkin

quantifier [Hen61].

A DQBF ϕ is considered to be True, if there exists a function fi : {0, 1}|Hi| 7→

{0, 1} for each existentially quantified variable yi, such that φ(X, f1(H1), . . . , fm(Hm)),

obtained by substitution of each yi by its corresponding function fi, is a tautology.

Given a DQBF ϕ, the problem of DQBF satisfiability, is to determine whether

a given DQBF is True or False. The DQBF satisfiability is a decision problem

that looks for an answer to the question: Does there exist a function correspond-

ing to each existentially quantified variable, in terms of its Henkin dependencies,

such that the formula substituted with the function in places of existentially quan-

tified variables is a tautology? Owing to wide variety of applications that can be

represented as DQBF, recent years have seen a surge of interest in DQBF solv-

ing [GRS+13, FKBV14, RSS21, TR19, WWSB16].

84

In many cases, a mere True/False answer is not sufficient as one is often inter-

ested in determining the definitions corresponding to those functions. For instance,

in the context of engineering change of order (ECO), in addition to just knowing

whether the given circuit could be rectified to meet the golden specification, one

would also be interested in deriving corresponding patch functions [JKL20]. Owing

to the naming of dependencies, we call such patch functions to be Henkin functions

(formally discussed in Chapter 2).

We have made significant progress in advancing Henkin synthesis by introducing

the Manthan framework, which enables the synthesis of Henkin functions [GRM23].

In our research, we proposed a novel approach called Manthan3 for Henkin function

synthesis. Unlike existing techniques, Manthan3 combines the power of machine

learning with automated reasoning to synthesize Henkin functions.

8.1 Approach

We now discuss each of the component discussed in Part II for Henkin synthesis.

Candidate Learning: Manthan3 learns a binary decision tree classifier for each

existentially quantified variable yi to learn the candidate function fi corresponding

to it. The valuations of yi in the generated samples are considered labels, and the

valuations of corresponding Henkin dependencies Hi are considered the feature set

to learn a decision tree. A Henkin function fi corresponding to yi is computed as a

disjunction of labels along all the paths from the root node to leaf nodes with label

1 in the learned decision tree.

Due to the Henkin dependencies, the feature set for yi must be restricted only to

Hi. However, in order to learn a good decision tree, we can include all the yj in the

set of features for which Hj ⊂ Hi. The function fj can be simply expanded within

fi so that fi is only expressed in terms of Hi. For the cases when Hj = Hi, such

use of the Y variables is allowed as long it does not cause the cyclic dependencies;

that is, if yj appears in the learned candidate fi, then yi is not allowed as a feature

85

to learn candidate fj. If yj appears in fi, then we say yi depends on yj, denoted as

yi ≺d yj. Manthan3 discovers requisite variable ordering constraints among such Y

variables on the fly as the candidate functions are learned, just like, Manthan.

Verification: The learned candidate vector may not always be a valid Henkin

vector. Therefore, the candidate functions must be verified. f is a Henkin function

vector only if φ(X, f1(H1), . . . , fm(Hm)) is a tautology. Manthan3 first, make a SAT

solver call on the formula E(X,Y ′) = ¬φ(X,Y ′) ∧ (Y ′ ↔ f).

If formula E(X,Y ′) is UNSAT, Manthan3 returns the function vector f as a

Henkin function vector. If formula E(X,Y ′) is SAT and δ is a satisfying assignment

of E(X,Y ′), Manthan3 needs to find out whether φ(X,Y) has a propositional model

extending assignment of X. Therefore, Manthan3 performs another satisfiability

check on formula φ(X,Y)∧ (X ↔ δ[X]). If satisfiability checks return UNSAT, the

corresponding DQBF formula is False, and there does not exist a Henkin function

vector; therefore, Manthan3 terminates. Furthermore, if φ(X,Y) ∧ (X ↔ δ[X]) is

SAT, and π is a satisfying assignment and we need to repair the candidate function

vector. Note that π[X] is same as δ[X], and π[Y] is a possible extending assignment

of X, and δ[Y ′] presents the output of candidate function vector with δ[X]. Now,

we have a counterexample σ as π[X] + π[Y] + δ[Y ′].

Candidate Repair: We apply a counterexample driven repair approach for can-

didate functions. As Manthan3 attempts to fix the counterexample σ, it first needs

to find which candidates to repair out of f1 to fm candidates. Manthan3 takes help of

MaxSAT solver to find out the repair candidates, and makes a MaxSAT query with

φ(X,Y) ∧ (X ↔ σ[X]) as hard constraints and (Y ↔ σ[Y ′]) as soft constraints.

It selects a function fi for repair if the corresponding soft constraint yi ↔ σ[y′i]

is falsified in the solution returned by the MaxSAT solver. Once, we have candi-

date functions to repair, Manthan3 employs unsatisfiability cores obtained from the

infeasibility proofs capturing the reason for candidate functions to not meet the

specification to construct a repair.

86

Let us now assume that Manthan3 selects fi corresponding to variable yi as a

potential candidate. Manthan3 constructs another formula Gi(X,Y) (Formula 8.1)

to find the repair, which is a modification of Formula 6.2 discussed in Chapter 6:

Gi(X,Y) : φ(X,Y) ∧ (Hi ∪ Ŷ ↔ σ[Hi ∪ Ŷ]) ∧ (yi ↔ σ[y′i])

where Ŷ ⊆ Y such that ∀yj ∈ Ŷ : Hj ⊆ Hi

and {TotalOrder[index(yj)] > TotalOrder[index(yi)]} (8.1)

Informally, in order to determine whether fi needs to be repaired, we conjunct

the specification φ(X,Y) with the conjunction of unit clauses that set the valuation

of yi to the current output of fi and the valuation of all the dependencies as per the

counter-example. We describe the intuition behind construction of Gi(X,Y). The

formula Gi(X,Y) is constructed to answer: Whether is it possible for yi to be set to

the output of fi given the valuation of its Henkin dependencies?.

The answer to the above question depends on whether Gi(X,Y) is UNSAT or

SAT. Gi(X,Y) being UNSAT indicates that it is not possible for yi to be set to

the output of fi and the UnsatCore of Gi(X,Y) captures the reason. Accordingly,

Manthan3 uses the UnsatCore of Gi(X,Y) to repair the candidate function fi. In

particular, Manthan3 uses all the variables corresponding to unit clauses in Unsat-

Core of Gi(X,Y) to construct a repair formula β, and depending on the valuation

of y′i in the counter example σ, β is used to strengthen or weaken the candidate fi

to satisfy the counterexample.

On the other hand, if Gi(X,Y) is SAT, Manthan3 attempts to find alternative

candidate functions to repair. Gi(X,Y) being SAT indicates that with the current

valuation to Henkin dependencies, yi could take a value as per the output of candi-

date fi; however, to fix the counterexample σ, we need to repair another candidate

function. To this end, let ρ be a satisfying assignment of Gi(X,Y), then all yj vari-

ables for which ρ[yj] is not the same as σ[y′j] are added to the queue of potential

candidates to repair.

87

In Formula 8.1, we add a constraint Ŷ ↔ σ[Ŷ] in Gi(X,Y) where Ŷ is a set

of Y variables such that for all yj of Ŷ , Hj ⊆ Hi. Fixing valuations for such yj

variables helps Manthan3 to synthesize a better repair for candidate fi. Consider

the following example. Let ∀X∃H1∃H2φ(X,Y), where φ(X,Y) : (y1 ↔ x1 ⊕ y2),

H1 = {x1} and H2 = {x1}. Let us assume that we need to repair the candidate

f1, and G1(X,Y) = (y1 ↔ σ[y′1]) ∧ φ(X,Y) ∧ (x1 ↔ σ[x1]). As G1(X,Y) does

not include the current value of y2 that led to the counterexample, it misses out on

driving f1 in a direction that would ensure y1 ↔ x1⊕ y2. In fact, in this case repair

formula β would be empty, thereby failing to repair.

The repair loop continues until either E(X,Y ′) is UNSAT or φ(X,Y) ∧ (X ↔

δ[X]) is UNSAT, where δ is a satisfying assignment of E(X,Y ′) . If E(X,Y ′) is

UNSAT, we have a Henkin function vector f , and if φ(X,Y) ∧ (X ↔ δ[X]) is

UNSAT, then the given DQBF instance is False and there does not exist a Henkin

function vector.

Algorithm for Manthan3. Manthan3 (Algorithm 9) takes a DQBF instance ∀X∃H1y1

. . . ∃Hmymφ(X,Y) as input and outputs a Henkin function vector f := 〈f1, . . . , fm〉.

Algorithm 9 assumes access to the following subroutines:

1. GetSamples: It takes a specification as input and calls a constrained sampler

to produce samples Σ of specifications. Each sample in Σ is a satisfying

assignment of specifications.

2. CandidateSkF: This subroutine generates the candidate function corresponding

to an existential variable. It takes a specification φ, generated samples Σ,

existential variable yi corresponding to which we want to learn a candidate

function and a vector D that keeps track of dependencies among Y variables

as input. CandidateSkF returns a candidate function fi corresponding to yi,

and updates the dependencies in D for yi. We discussed CandidateSkF routine

in detail in Algorithm 4.

3. FindOrder: It takes a set D collection of di, where each di is the list of Y

88

Algorithm 9 Manthan3(∀X∃HY.φ(X,Y))
1: Σ← GetSamples(φ(X,Y))
2: D ← {d1 = ∅ . . . , d|Y | = ∅}
3: for 〈Hi, Hj〉 do
4: if Hj ⊂ Hi then
5: dj ← dj ∪ yi
6: for yi ∈ Y do
7: fi, D ← CandidateSkF(Σ, φ(X,Y), yi, D)

8: TotalOrder← FindOrder(D)
9: repeat

10: E(X,Y ′)← ¬φ(X,Y ′) ∧ (Y ′ ↔ f)
11: ret, δ ← CheckSat(E(X,Y ′))
12: if ret = SAT then
13: res, π ← CheckSat(φ(X,Y) ∧ (X ↔ δ[X]))
14: if res = UNSAT then
15: return ∀X∃HY.φ(X,Y) is False.
16: σ ← π[X] + π[Y] + δ[Y ′] ▷ //σ is a counterexample
17: f ← RepairSkF(φ(X,Y),f , σ,TotalOrder)
18: until ret = UNSAT
19: f ← Substitute(φ(X,Y),f ,TotalOrder)
20: return f

variables, which can depend on yi. FindOrder obtains a valid linear extension,

TotalOrder, from the partial dependencies in D.

4. CheckSat: It takes a specification as input and makes a SAT call to do a

satisfiability check on the specification. It returns the outcome of satisfiability

check as SAT or UNSAT. In the case of SAT, it also returns a satisfiable

assignment of the specification.

5. RepairSkF: This subroutine repairs the current candidate function vector to

fix the counterexample. It takes the specification, candidate function vector,

a counterexample, and TotalOrder, a linear extension of dependencies among

Y variables as input, and returns a repaired candidate function vector. Algo-

rithm 7 discusses RepairSkF subroutine in detail.

Algorithm 9 starts with generating samples Σ by calling GetSamples subroutine

at line 1. Next, Algorithm 9 initializes the set D (line 2), which is a collection of di,

where di represents the set of Y variables that depends on yi. Lines 3-5 introduce

89

variable ordering constraints based on the subset relations in each 〈Hi, Hj〉 pair, that

is, if Hj ⊂ Hi, then yi can depend on yj. Line 7 calls the subroutine CandidateSkF

for every yi variable to learn the candidate function fi. Next, at line 8, Manthan3

calls FindOrder to compute TotalOrder, a topological ordering among the Y variables

that satisfy all the ordering constraints in D.

In line 11, CheckSat checks the satisfiability of the formula E(X,Y ′) described at

line 10. If E(X,Y ′) is SAT, then Manthan3 at line 13 performs another satisfiability

check to ensure that propositional model to X can be extended to Y . If CheckSat

at line 13 is UNSAT, then Algorithm 9 terminates at line 15 as there does not exists

a Henkin function vector, otherwise Manthan3 has a counterexample σ to fix. The

candidate vector f goes into a repair iteration (line 17) based on the counterexample

σ, that is, the subroutine RepairSkF repairs the current function vector f such that

σ now gets fixed. Manthan3 returns a function vector f only if E(X,Y ′) is UNSAT.

Implementation Optimization: Notice that the satisfiability checks at line 11

and 13 of Algorithm 9 can be combined by checking satisfiability of E(X,Y, Y ′) :

φ(X,Y) ∧ ¬φ(X,Y ′) ∧ (Y ′ ↔ f). The formula E(X,Y, Y ′) (Formula 6.1) to verify

the Skolem function vector [JSC+15]. If E(X,Y, Y ′) is SAT, and σ is a satisfying

assignment of E(X,Y, Y ′), Manthan3 needs to repair the candidate function vector

to fix counterexample σ. Otherwise, if E(X,Y, Y ′) is UNSAT, Manthan3 needs to

perform another satisfiability check to ensure that the given DQBF instance is True,

that is, a final satisfiability check on E(X,Y ′) : ¬φ(X,Y ′) ∧ (Y ′ ↔ f). If E(X,Y ′)

is UNSAT, Manthan3 can return the function vector f as a Henkin function vector,

else, the given DQBF instance is False and there does not exists a Henkin function

vector.

By definition of Henkin functions, we know that the following lemma holds:

Lemma 8.1. f is a Henkin function vector if and only if ¬φ(X,Y) ∧ (Y ↔ f) is

UNSAT.

Manthan3 returns a function vector only when E(X,Y ′) : ¬φ(X,Y ′) ∧ (Y ′ ↔

90

f) is UNSAT, and each function fi follows Henkin dependencies by construction.

Therefore Manthan3 is sound, and returns a Henkin function vector.

Limitations: There are instances for which Manthan3 might not be able to repair

a candidate vector, and consequently is not complete. The limitation is that the

formula G(X,Y) (Formula 8.1) is not aware of Henkin dependencies.

Let us consider an example, ϕ : ∀X∃H1y1 ∃H2y2 φ(X,Y) whereX = {x1, x2, x3}, Y =

{y1, y2}, φ(X,Y) := ¬(y1 ⊕ y2), H1 = {x1, x2}, and H2 = {x2, x3}. Note that ϕ

is True and Henkin functions are f := 〈f1(x1, x2) : x2, f2(x2, x3) : x2〉. Let us as-

sume the candidates learned by Manthan3 is f := 〈f1(x1, x2) : x2, f2(x2, x3) : ¬x2〉.

E(X,Y ′) is SAT. Let δ |= E(X,Y ′), and δ = 〈x1 ↔ 0, x2 ↔ 0, x3 ↔ 0, y′1 ↔ 0,

y′2 ↔ 1〉. Furthermore, φ(X,Y) ∧ (X ↔ δ[X]) is also SAT, let π : 〈x1 ↔ 0, x2 ↔ 0,

x3 ↔ 0, y1 ↔ 1, y2 ↔ 1〉 be the satisfying assignment. Let the candidate to repair is

y2, and corresponding G2 formula is G2 := φ(X,Y)∧(x2 ↔ 0)∧(x3 ↔ 0)∧(y2 ↔ 1).

As H1 6⊆ H2, the formula G2 is not allowed to constrain on y1. G2 turns out SAT,

suggesting that we should try to repair y1 instead of y2, but as y1 is also not allowed

to depend on y2, the formula G1 would also be SAT. Therefore, Manthan3 is unable

to repair candidate f to fix counterexample the σ. Manthan3 would not be able to

synthesize Henkin functions for such a case. Hence, Manthan3 is not complete.

We now illustrate Algorithm 9 for Manthan3 through an example.

Example 8.2. LetX = {x1, x2, x3}, Y = {y1, y2, y3} in ∀X∃H1y1 ∃H2y2∃H3y3φ(X,Y)

where φ(X,Y) is (x1∨y1)∧(y2 ↔ (y1∨¬x2))∧(y3 ↔ (x2∨x3)), and H1 = {x1}, H2 =

{x1, x2}, and H3 = {x2, x3}.

Data Generation : Manthan3 generates training data through adaptive sam-

pling. Let us assume the sampler generates data as shown in Figure 8.1.

Candidate Learning : As H1 ⊂ H2, Manthan3 adds a dependency constraint

that y1 can not depend on y2. Manthan3 now attempts to learn candidates and calls

91

x1 x2 x3 y1 y2 y3

0 0 0 1 1 0
0 0 1 1 1 1
1 1 0 0 0 1

Figure 8.1: Henkin synthe-
sis by Manthan3 example: Data
generations.

x1

01

10

Figure 8.2: Henkin syn-
thesis by Manthan3 exam-
ple: Learning candidate for
y1 with feature set {x1}.

y1

10

10

Figure 8.3: Henkin syn-
thesis by Manthan3 example:
Learning candidate for y2
with feature set {x1, x2, y1}.

x3

x2 1

0 1

0 1

0 1

Figure 8.4: Henkin syn-
thesis by Manthan3 exam-
ple: Learning candidate for
y3 with feature set {x2, x3}.

CandidateSkF for each yi. As H3 6⊆ H1, y1 can not depend on y3, the feature set

for y1 only includes H1. The decision tree construction uses the samples of {x1} as

features and samples of {y1} as labels. The candidate function f1 is constructed by

taking a disjunction over all the paths that end in leaf nodes with label 1. As shown

in Figure 8.2, f1 is ¬x1.

As H1 ⊂ H2, the feature set for y2 includes H2 and y1, however it can not include

y3 as H3 6⊆ H2. So, the decision tree construction uses the samples of {x1, x2, y1}

as features and samples of {y2} as labels. The candidate function f1 is constructed

by taking a disjunction over all paths that end in leaf nodes with label 1: as shown

in Figure 8.3, f2 is synthesized as y1. Similarity, for y3, the feature set is H3, and a

decision tree is constructed as shown in Figure 8.4 with samples of x2, x3 as features

and samples of y3 as label. We get f3 := x3∨(¬x3∧x2). At the end of CandidateSkF,

we have f1 := ¬x1, f2 := y1, f3 := x3 ∨ (¬x3 ∧ x2) . Let us assume the total order

returned by FindOrder is TotalOrder = {y3, y2, y1}.

Verification : We construct E(X,Y ′) = ∧¬φ(X,Y ′) ∧ (Y ′ ↔ f), which turns

out to be SAT, and let δ = 〈x1 ↔ 1, x2 ↔ 0, x3 ↔ 0, y′1 ↔ 0, y′2 ↔ 0, y′3 ↔ 0〉

92

be a satisfying assignment of E(X,Y ′). Next, Manthan3 checks if the X valaution

can be extended to Y in order to satisfy the specification. It checks satisfiability of

φ(X,Y) ∧ (x1 ↔ δ[x1]) ∧ (x2 ↔ δ[x2]) ∧ (x3 ↔ δ[x3]), which turns out to be SAT,

let π be the satisfying assignment, π = 〈x1 ↔ 1, x2 ↔ 0, x3 ↔ 0, y1 ↔ 1, y2 ↔ 1,

y3 ↔ 0〉. Let σ = 〈x1 ↔ 1, x2 ↔ 0, x3 ↔ 0, y1 ↔ 1, y2 ↔ 1, y3 ↔ 0, y′1 ↔ 0,

y′2 ↔ 0, y′3 ↔ 0〉 be a counterexample to fix.

Candidate Repair : In order to find the candidates to repair, MaxSAT solver is

called with φ(X,Y)∧ (x1 ↔ σ[x1])∧ (x2 ↔ σ[x2])∧ (x3 ↔ σ[x3]) as hard constraints

and (y1 ↔ σ[y′1]) ∧ (y2 ↔ σ[y′2]) ∧ (y3 ↔ σ[y′3]) as soft constraints in MaxSATList.

Let MaxSATList returns ind = {y2}.

Repair synthesis commences for f2 with a satisfiability check of G2 = φ(X,Y)∧

(x1 ↔ σ[x1]) ∧ (x2 ↔ σ[x2]) ∧ (y1 ↔ σ[y′1]) ∧ (y2 ↔ σ[y′2]). Notice, here we can

constrain G2 with y1 as H1 ⊂ H2. The formula is unsatisfiable, and Manthan3

calls FindCore, which returns variable ¬x2, since the constraints (x2 ↔ σ[x2]) and

(y2 ↔ σ[y′2]) are not jointly satisfiable in G2. As the output of candidate f2 for the

assignment σ must change from 0 to 1, f2 is repaired by disjoining with ¬x2, and

we get f2 := y1 ∨ ¬x2 as the new candidate.

The updated candidate vector f : 〈f1 := ¬x1, f2 := y1 ∨ ¬x2, f3 := x3 ∨ (¬x3 ∧

x2) 〉 passes the verification check, that is, the formula E(X,Y ′) is UNSAT. Thus,

Manthan3 returns f as a Henkin function vector.

8.2 Experimental Results

It is widely recognized that different techniques exhibit varying performance across

different classes of benchmarks, particularly in the context of NP-hard problems.

The practical adoption often employs a portfolio approach [DPV21, HPSS18, XHHLB08].

Consequently, when assessing the impact of a new technique, it is common to eval-

uate its influence on the existing portfolio.

To evaluate the effectiveness of our algorithm on instances that current algo-

93

rithms struggle with, we focus on the Virtual Best Synthesizer (VBS). VBS

represents the portfolio of the best-performing algorithms currently available. If at

least one tool within the portfolio can successfully synthesize Henkin functions for

a given instance, it is considered to be synthesized by VBS. In other words, VBS

is at least as capable as each individual tool within the portfolio. The time taken

by VBS to synthesize Henkin functions for a specific instance is determined by the

minimum time required by any tool in the portfolio to synthesize a function for that

instance. Therefore, the objective of the experimental evaluation is to determine

whether Manthan3 was able to push the boundaries of VBS by synthesizing Henkin

functions for instances that could not be handled by any existing tools.

Benchmarks: We performed an extensive comparison on 563 benchmarks con-

sisting of a union of benchmarks from the DQBF track of QBFEval18, 19, and

20 [qbfc], which encompass equivalence checking problems, synthesis of controller,

and succinct DQBF representations of propositional satisfiability problems.

Setup: Manthan3 employs Open-WBO [MML14] for MaxSAT queries, PicoSAT [Bie08]

to find UNSAT cores, ABC [LG] to represent and manipulate Boolean functions,

CMSGen to generate the required samples [GSCM21], UNIQUE [Sli20] to extract

definition for uniquely defined variables, and Scikit-Learn [skl] is used to generate

decision trees to learn candidate functions.

All our experiments were conducted on a high-performance computer cluster

with each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM,

with a memory limit set to 4GB per core. All tools were run in a single core with a

timeout of 7200 seconds for each benchmark.

Tools compared with: We performed a comparison vis-a-vis the prior state-of-

the-art techniques, HQS2 [GWR+15] and Pedant [RSS21]. Note that we compared

Manthan3 with the tools that can synthesize Henkin functions for True DQBF; the

rest all the DQBF solvers, including DepQBF [LB10], DQBDD [Sìc̆20] do not syn-

94

thesize such functions. The DQBF preprocessor HQSpre [WRMB17] is invoked

implicitly by HQS2. We found that the performance of Pedant degrades with the

preprocessor HQSPre; therefore, we consider the results of Pedant without prepro-

cessing. Manthan3 is used without HQSpre.

Results: Figure 8.5 depicts the cactus plot comparing the Virtual Best Synthe-

sizer (VBS) of HQS2 and Pedant against the VBS comprising HQS2, Pedant, and

Manthan3. The results show that with the inclusion of Manthan3, the VBS synthe-

sizes functions for 204 instances, whereas the VBS without Manthan3 only manages

to synthesize functions for 178 instances. This signifies an improvement of 26 in-

stances in the VBS when utilizing Manthan3. Out of a total of 563 benchmarks,

Henkin functions are successfully synthesized for 204 instances by at least one of

the three tools.

Furthermore, Manthan3 demonstrates the fastest synthesis time on 42 bench-

marks, which includes 26 instances where none of the other tools were able to syn-

thesize Henkin functions. This highlights the effectiveness and efficiency of Manthan3

in tackling challenging synthesis tasks.

0 25 50 75 100 125 150 175 200
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

VBS+Manthan3
VBS

Figure 8.5: Henkin synthesis: Virtual Best Synthesizing Henkin functions with/without
Manthan3. VBS in the plot represents VBS of HQS2 and Pedant.

In Figure 8.6, VBS with HQS2 and Pedant is presented on x-axis and Manthan3

is presented on y-axis. Figure 8.6 highlights that the performance of Manthan3 is

orthogonal to existing tools. Furthermore, as shown in green area of Figure 8.6, for

95

10−1 100 101 102 103

VBS(HQS+Pedant)(s)

10−1

100

101

102

103

M
an

th
an

3(
s)

Timeout

Ti
m

eo
ut

Figure 8.6: Henkin synthesis: Manthan3 vs. VBS(HQS2+Pedant).

47 instances Manthan3 took less than or equal to additional 10 seconds to synthesize

Henkin functions than by the VBS with HQS2 and Pedant.

Table 8.1: Henkin synthesis: Manthan3 vs other state-of-the-art tools.

HQS2 Pedant Manthan3
Synthesized Functions 148 138 116

Manthan3(more) 40 37 -

We present a detailed pairwise comparison in Table 8.1. The first row of Table 8.1

presents the number of instances for which HQS2, Pedant and Manthan3 could

synthesize a Henkin functions. And, the second row of Table 8.1 presents the number

of instance for which a function vector was synthesized by Manthan3, but not by

HQS2 and Pedant in Column 2 and 3 respectively.

Figure 8.7 (resp. Figure 8.8) represents scatter plot for Manthan3 vis-a-vis with

HQS2 (resp. Pedant). The distribution of the instances for which functions are

synthesized shows that all three tools are incomparable. There are many instances

where only one of these tools succeeds, and others fail. In total there are 148, 138

and 116 instances for which HQS2, Pedant and Manthan3 could synthesize Henkin

functions respectively. Moreover, there are 40 instances for which Manthan3 could

synthesize Henkin functions, whereas HQS2 could not produce a Henkin function

vector. Similarly, there are 37 instances for which Manthan3 was able to come up

with a Henkin function vector and Pedant could not synthesize Henkin functions.

96

10−1 100 101 102 103

HQS(s)

10−1

100

101

102

103
M

an
th

an
3(

s)

Timeout

Ti
m

eo
ut

Figure 8.7: Henkin synthesis:
Manthan3 vs.HQS2.

10−1 100 101 102 103

Pedant(s)

10−1

100

101

102

103

M
an

th
an

3(
s)

Timeout

Ti
m

eo
ut

Figure 8.8: Henkin synthesis:
Manthan3 vs. Pedant.

A point 〈x, y〉 implies that the synthesizer on 〈x〉 axis took x seconds while the synthesizer on 〈y〉
axis tooks y seconds to synthesize Henkin functions for an instance.

10−1 100 101 102 103

HQS(s)

10−1

100

101

102

103

Pe
da

nt
(s

)

Timeout

Ti
m

eo
ut

Figure 8.9: Henkin synthesis: Pedant vs.HQS2.

Figure 8.9 shows that there is no best tool even amongst the existing tools,

Pedant and HQS2. Although both tools could synthesize functions for (almost) the

same number of instances, the instances belong to different classes.

The results show that different approaches are suited for different classes of

benchmarks, and Manthan3 [GRM23] pushes the envelope in Henkin synthesis by

handling instances for which none of the state-of-the-art tools could synthesize

Henkin functions.

Part IV

Generalization from Functional

Synthesis

97

98

This Part is dedicated to exploring the generalization of functional synthesis

in different settings. In Chapter 9, we establish a crucial link between functional

synthesis and program synthesis. We demonstrate how program synthesis can be

effectively achieved by reducing it to dependency quantified formulas modulo an

underlying theory, thus enabling program synthesis through functional synthesis.

Furthermore, in Chapter 10, we introduce a comprehensive approach that com-

bines machine learning and formal methods. This approach is designed to address

real-world scenarios where constraints do not have equal priority. In these practical

settings, the system must satisfy certain constraints, while also attempting to satisfy

other constraints as much as possible. By integrating machine learning and formal

methods, our approach enables the effective handling of diverse constraints, striking

a balance between the different priorities imposed by the constraints.

Chapter 9

Program Synthesis as Dependency

Quantified Formulas

A crucial ingredient in the NP revolution was the reduction of key problems such

as planning [KS92] and bounded model checking [BCCZ99] to SAT. Such reductions

served as a rich source of practical instances, and at the same time, planning and

bounded model checking tools built on top of SAT achieved fruits of the progress

in SAT solving and thereby leading to even wider adoption, and contributing to a

virtuous cycle [MSLM09].

Our investigation aims to explore various applications of functional synthesis.

Specifically, we focus on program synthesis, a key problem in programming lan-

guages, and examine its relationship with DQF(T), which refers to the problem of

finding a witness of a Dependency Quantified Formula Modulo Theory. In program

synthesis, given a specification φ(X,Y) that defines the desired behavior of a pro-

gram in terms of inputs (X) and outputs (Y), the goal is to synthesize a program

that satisfies the specification.

The earliest work on program synthesis can be traced back to Church [Kol32],

but the computational complexity of the problem posed challenges in developing

practical techniques. A significant breakthrough came with the introduction of

100

Syntax-Guided Synthesis (SyGuS) [ABJ+13b]. In the SyGuS formulation, in ad-

dition to the specification φ, the input also includes a grammar that defines the

set of allowed implementations of the program f . The grammar serves to restrict

the space of possible implementations, enabling the development of efficient tech-

niques for enumerating over the grammar, primarily to assist the underlying solver

by constraining the search space [ABJ+13b, ARU17, BCD+11].

Recent studies have emphasized that for a wide range of applications, grammars

are used solely to enhance solver efficiency. Therefore, there have been suggestions

to use more expressive grammars for a given SyGuS instance [PMNS19]. In many

cases, end users are primarily interested in finding any function that can be expressed

using a specific theory T. To clarify, we refer to this class of program synthesis

problems as “T-constrained” synthesis. It is worth noting two observations: First,

T-constrained synthesis is a subclass of SyGuS, meaning that every instance of T-

constrained synthesis is also an instance of SyGuS. Notably, recent work has focused

on developing specialized algorithms specifically tailored for T-constrained synthesis,

such as the counterexample-guided quantifier instantiation algorithm in [RDK+15].

This thesis establishes a connection between Theory-constrained synthesis and

DQF(T) [GRM21]. In particular following:

From T-constrained synthesis to DQF(T). We present an efficient reduction

of T-constrained synthesis to DQF(T). DQF(T) lifts the notion of DQBF

from the Boolean domain to general Theory T. We view the simplicity of the

reduction from T-constrained synthesis to DQF(T) as a core strength of the

proposed approach.

Efficient T-constrained synthesizers for T=bitvectors. The reduction to DQF(T)

opens up new directions for further work. As a first step, we focus on the case

when the T is restricted to bitvector theory, denoted by BV. We observe that

the resulting DQF(BV) instances can be equivalently specified as a DQBF

instance. We demonstrate that our reduction to DQBF allows us to simply

plug-in the state of the art DQBF solvers [FKBV14, GWR+15, RT15, Sìc̆20].

101

The Power of DQBF. The remarkable progress in DQBF over the past few years

is evident in our observation that DQBF-based synthesizers perform signifi-

cantly better than domain-specific techniques that focus on utilization of the

grammar to achieve efficiency. Our investigations were motivated by the clas-

sical work of Kautz and Selman [KS92] that showcased the power of general

purpose SAT solvers in achieving advances over domain specific techniques.

In this spirit, our work showcases the power of reducing synthesis to DQF(T).

One question that we did not address so far is the choice of DQF(T) over T-

constrained synthesis. To this end, we again focused on the case when T=BV,

and we transform DQBF benchmarks to program synthesis, and perform a

comparison of program synthesis techniques vis-a-vis DQBF techniques. We

observe that DQBF techniques significantly outperform the program synthe-

sis techniques for these benchmarks; these results highlight the versatility of

DQBF techniques and provide evidence in support of our choice of DQBF as

the representation language.

Role of Grammars. Since DQBF-based synthesis techniques perform better than

techniques that rely on grammar for efficiency, we would like to put forth the

thesis of the usage of grammar as a specification tool rather than to guide the

search strategy of the underlying synthesis engines, i.e., evolution of syntax-

guided synthesis to syntax-constrained synthesis.

9.1 Reduction of T-Constrained Synthesis to DQF(T)

We propose the reduction of T-constrained synthesis to DQF(T), i.e, to the problem

of finding a witness of a dependency quantified formula modulo theory. A key

strength of the reduction is its simplicity.

Before discussing the reduction in detail, let us establish some notations and

vocubarly needed for the reductions. Let us first discuss the well-known formulation

of syntax-guided synthesis (SyGuS). In this formulation, the constraints over the

102

functions to be synthesized are specified in the vocabulary of a given background

theory T along with the function symbols. Notice that the background theory

specifies the domain of values for each variable type along with the interpretation

for the function(s) and predicate symbols in the vocabulary.

Definition 9.1 ([ABJ+13b]). Given a background theory T, a set of typed function

symbols {f1, f2, . . . fk}, a specification φ over the vocabulary of T∪{f1, f2, . . . fk}, a

set of expressions {L1, . . . Lk} over the vocabulary of T such that Li is of the same type

as fi, the problem of syntax-guided synthesis (SyGuS) is to find a set of expressions

{e1 ∈ L1, e2 ∈ L2, . . . ek ∈ Lk} such that the formula φ[f1/e1, f2/e2, . . . fk/ek] is valid

modulo T. Note that φ[fi/ei] denotes the result of substitution of fi with expression

ei such that the bindings of inputs to fi is ensured.

If every invocation of f in φ has an identical argument-list, then |CallSigns(f)| =

1, and we refer to φ as a single-callsign instance. Otherwise, φ is a multiple-callsign

instance. We use args(f) to get the argument lists of function f , and f(args) to

represents the invocation of f with its args.

We are interested in the subclass of SyGuS where Li corresponds to the com-

plete vocabulary of T; we call such a class as T-constrained synthesis discussed in

Chapter 2, again defined formally below:

Definition 9.2. Given a background theory T, a set of typed function symbols

{f1, f2, . . . fk}, a specification φ over the vocabulary of T∪{f1, f2, . . . fk}, the problem

of T-constrained synthesis is to find the set of expressions {e1, e2, . . . ek} defined over

vocabulary of T such that the formula φ[f1/e1, f2/e2, . . . fk/ek] is valid modulo T.

Algorithm 10 formalizes the desired reduction of φ to DQF(T) formulation where

φ is a specification over the vocabulary of background theory T with a set of typed

function symbols {f1, f2, . . . fm} such that for all fi, |CallSigns(fi)| = 1. The impor-

tant point to note is that the Henkin quantifiers must be carefully constructed so

that each fi depends only on the set of variables that appear in its argument-list.

Now, let us turn our attention to the case when there exist fi such that |CallSigns(fi)| >

1. In such cases, we pursue a Ackermannization-style technique that transforms φ

103

Algorithm 10 Reducing a single-callsign instance φ to DQF(T)
Input A background theory T, a set of typed function symbols {f1, f2, . . . fm},

a specification φ over the vocabulary of T
Output ∀X∃H1y1. ∃H2y2 . . . ∃Hmymφ(X,Y)

1: Let X =
∪

fi
{h | h ∈ CallSigns(fi)}

2: Substitute every invocation of fi with a fresh variable yi in φ
3: Define Hi = Set(h) as {h|h ∈ CallSigns(fi)}

into another specification φ̂ such that every function fi in φ̂ has |CallSigns(fi)| = 1

(Algorithm 11). Note that this transformation allows the subsequent use of Algo-

rithm 10 with φ̂ to complete the reduction to DQF(T). The proposed transforma-

tions in Algorithm 11 are linear in the size of the formula like the transformation

introduced in [Rab17], however Algorithm 11 introduces lesser number of new vari-

ables.

Algorithm 11 Reducing multiple-callsign to single-callsign instance
Input A background theory T, a set of typed function symbols {f1, f2, . . . fm},

a specification φ over the vocabulary of T such that ℓi = |CallSigns(fi)|
Output A set of typed function symbols {f 0

1 , f
2
1 , . . . f

ℓ1
1 , . . . , f

0
m . . . f

ℓm
m }, a spec-

ification φ̂ over the vocabulary of T such that ∀i, j we have |CallSigns(f j
i)| = 1.

1: for i = 1 to m do
2: if |CallSigns(fi)| > 1 then
3: Add a fresh (ordered) set of variables Zi such that |Zi| = |CallSigns(fi)[0]|
4: for j ∈ [0 . . . (ℓi − 1)] do
5: Replace every fi whose args(fi) = CallSigns(fi)[j] with f j

i

6: Add constraint (args(f j
i) = Zi)→ f j

i (args) = f ℓi
i (Zi) to φ

7: CallSigns(fi)← CallSigns(fi) ∪ {Zi}

The essence of Algorithm 11 is captured in the following two transformations:

(Line 5). We substitute instances of every call signature of fi with fresh function

symbols f j
i (that corresponds to the jth call signature of fi). This reduces the

formula from multiple-callsign to a single-callsign instance.

(Line 6). Introduction of an additional constraint for each fi that forces all the

functions f j
i (introduced above) to mutually agree on every possible instantiation

of arguments. Specifically, it introduces a fresh function symbol f li
i and a set of

fresh variables zi1, . . . , zin ∈ Zi such that, for all argument lists args(f j
i), we have

104

(args(f j
i) = Zi) =⇒ f j

i (args) = f ℓi
i (Zi) where j ∈ [0 . . . li−1].

9.1.1 When T is Bitvector (BV):

When the specification φ(X,Y) is in BV, we solve the problem in the following

steps:

1. Reduction to single-instance: If φ(X,Y) is a multiple-callsign instance, we use

Algorithm 11 to covert it to a single-callsign instance φ̂(X̂, Ŷ).

2. Reduction to DQF(BV): We use Algorithm 10 to generate the DQF(BV) in-

stance of φ̂(X̂, Ŷ) as ∀X̂∃H1 ŷ1. ∃H2 ŷ2 . . . ∃Hm ŷmφ̂(X̂, Ŷ).

3. Solving DQF(BV): We solve the DQF(BV) instance by compiling it down to

a DQBF instance, thereby allowing the use of off-the-shelf DQBF solvers. We

detail this step in the following discussion.

For DQBF compilation, we perform bit-blasting over φ̂ to obtain φ̂′.

∀X̂∃H1 ŷ1 . . . ∃Hm ŷmφ̂(X̂, Ŷ) ≡ ∀X ′∃X′
V. ∃H

′
1Y

′

1 . . . ∃H
′
mY

′

mφ
′(X ′, Y ′) (9.1)

where X ′, Y
′
i , H

′
i are the (bit-blasted) sets of propositional variables mapping to

the bitvector variables X̂, ŷi, Hi respectively. Furthermore, V is the set of auxiliary

variables introduced during bit-blasting, which are allowed to depend on all the

input variables X ′. From an efficiency perspective, one can record the correspond-

ing Henkin functions for the auxiliary variables during bit-blasting; we leave such

optimizations to future work. We employ off-the-shelf SMT solvers for bit-blasting.

As the formula on the right-hand side in Eq. 9.1 is an instance of DQBF, we

can simply invoke an off-the-shelf certifying DQBF solvers to generate the Henkin

functions for Y ′. A careful reader will observe that the Henkin functions corre-

sponding to y′i variables will be constructed in the propositional theory and not in

BV, but note that one can simply convert a formula in propositional theory into an

105

equivalent formula in bitvector theory defined over X̂, ŷ1, . . . ŷm with only a linear

size increase in the representation.

9.2 Experimental Results

The primary objective of empirical evaluation is to show how general purpose DQBF

techniques can be transformed to effective synthesis engines. In particular, our

empirical evaluation sought answers to the following questions:

1. How does theory constrained synthesis compare with syntax-guided synthesis?

2. Can general purpose DQBF solver-based synthesis framework match the effi-

ciency of domain specific synthesis tools?

3. Are BV-constrained synthesis an efficient approach to DQBF solving?

To this end, we perform an evaluation over an extensive suite of benchmarks and

tools, which we describe in detail below.

Tools under evaluation: Given a program synthesis instance defined over BV,

we sought to compare three different possibilities: executing a SyGuS tool, executing

a BV-constrained synthesis, and a DQBF-augmented synthesis framework. To this

end, we experimented with the following tools (Table 9.1):

Syntax-guided synthesis: SyGuS tools for bitvector theory spanning symbolic,

stochastic and enumerative solvers, like CVC4 [BCD+11], EUSolver [ARU17],

ESolver [URD+13], DryadSynth [HQSW20], Stochpp [ABJ+13b], Symbolic [ABJ+13b].

Since, we employ multiple versions of CVC4, we will refer to the SyGuS-based

variant of CVC4 as CVC4enum.

BV-constrained synthesis: It has been observed that any SyGuS tool can be con-

verted into a theory-constrained tool by a straightforward pipeline that mod-

ifies the grammar of the input instance to encompass the entire vocabulary of

106

the corresponding theory. However, our empirical evaluation has shown that

this transformation is ineffective, as the tools undergoing this process consis-

tently perform worse compared to their counterparts in syntax-guided mode.

Apart from the SyGuS-based BV-constrained tools, we also incorporate the

cutting-edge synthesis engine CVC4 [RDK+15] in the counter-example-guided

quantifier instantiation mode, which can be considered a native approach to

BV-constrained synthesis. We use the term CVC4cex to refer to CVC4 invoked

with counterexample-guided quantifier instantiation.

DQBF-based synthesis: The set of underlying DQBF solvers that we have em-

ployed in DQBF-based synthesis framework span CADET [Rab19], Manthan [GRM20,

GSRM21], DepQBF [LB10], DCAQE [TR19] and DQBDD [Sìc̆20]. A careful

reader might observe that CADET and Manthan are 2-QBF solvers, i.e., they

can only handle the special case when the existentially quantified variables are

allowed to depend on all the universally quantified variables.

Table 9.1: Program synthesis via functional synthesis: Tools used in evaluation.

Syntax-Guided BV-Constrained DQBF-based
CVC4enum,

ESolver EUSolver,
DryadSynth,

Stochpp

CVC4cex

CADET, DCAQE,
Manthan,
DepQBF,
DQBDD

Benchmarks: The benchmark suite consisted of instances from two sources: Sy-

GuS competition and QBF competition. We use 645 general-track bitvector (BV)

theory benchmarks from SyGuS competition 2018, 2019 1 to evaluate the perfor-

mance of SyGuS tools. To employ our DQBF-based framework, we used Z3 [DMB08]

to convert the instances from SyGuS to DQBF. Furthermore, we considered 609 QBF

benchmarks from QBFEval competition 17,182, disjunctive decomposition and arith-

metic set [AAC+19, Rab19] and converted them to SyGuS instances. We considered
1https://sygus.org/
2http://www.qbflib.org/index_eval.php

107

each propositional variable as a bitvector of size 1, and allow the synthesized func-

tion to depend on all the universally quantified variables. The associated grammar

for these benchmarks is the entire BV-vocabulary.

Implementation and Setup: Our reduction is implemented in a tool, DeQuS.

All our experiments were conducted on a high-performance computer cluster with

each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM, with

a memory limit set to 4GB per core. All tools were run in a single-threaded mode

on a single core with a timeout of 900s.

Results: Table 9.2 represents the instances solved by the virtual best solver for

SyGuS, BV constrained, and DQBF tools. The first row of Table 9.2 lists the number

of instances solved by different synthesis techniques: SyGuS based, BV-constrained

synthesis, and DQBF based synthesis for SyGuS instances, and the second row

represents the same for DQBF instances.

Table 9.2: Program synthesis via functional synthesis: Number of SyGuS and DQBF
instances solved using different synthesis techniques. Timeout 900s.

Total SyGuS-tools BV-constrained DQBF-based
SyGuS 645 513 606 610
DQBF 609 - 2 276

All 1254 513 608 886

As shown in Table 9.2, with syntax guided synthesis, we could synthesize the

functions for 513 out of 645 SyGuS instances only, whereas, with BV-constrained

synthesis, we could solve 606 such instances. Surprisingly, BV-constrained synthesis

performs better than the syntax-guided synthesis.

Table 9.2 also shows that the DQBF based synthesis tools perform similar to BV-

constrained synthesis tools for SyGuS instances; this provides strong evidence that

the general purpose DQBF solvers can match the efficiency of the domain specific

synthesis tools. Furthermore, BV-constrained synthesis tools perform poorly with

DQBF as representation language providing support for the efficacy of DQBF as a

108

representation language.

Performance analysis for SyGuS instances We used SyGuS instances to eval-

uate the performance with different synthesis strategies: DQBF based synthesis,

BV-constrained synthesis and syntax-guided synthesis. We further divide the SyGuS

instances into four sub-categories: single-function-single-callsign, single-function-

multiple-callsign, multiple-function-single-callsign, multiple-function-multiple-callsign.

Since the single-function-single-callsign instances can be converted into QBF in-

stances (instead of DQBF), we employ the state-of-the-art QBF solvers CADET [Rab19]

and DepQBF [LE17], Manthan [GRM20] for these instances.

Table 9.3: Program synthesis via functional synthesis: The top three tool for each cate-
gory are listed in the order of their performance, and the number (in bracket) represents
the number of instances solved.

Single-CallSign Multiple-CallSign

Single-Function

Total instances: 609
CADET(605),
CVC4cex(602),
Manthan(592)

Total instances: 9
CVC4enum(8),

DQBDD(2),
DCAQE(2)

Multiple-Functions

Total instances: 7
CVC4enum(5),

CVC4cex(4),
DQBDD(3)

Total instances: 19
CVC4enum(12),

DQBDD(0),
DCAQE(0)

With respect to utility of syntax for efficiency, it turns-out that CVC4 per-

forms better with BV-constrained synthesis than with syntax-guided synthesis, as

CVC4cex could solve 602 instances whereas CVC4enum could solve only 488. How-

ever, CVC4enum outperforms the other state-of-the-art SyGuS tools significantly.

The second best SyGuS tool was EUSolver which could solve only 236 instances.

Table 9.3 represents the overall analysis for all four categories of SyGuS instances.

As shown in Table 9.3, DQBF solvers and CVC4cex have similar performance in

terms of number of instances solved. Therefore, concerning domain specific vs DQBF

based synthesis, DQBF solvers perform on par to domain specific synthesis tools,

in-fact they perform slightly better for single-invocation-single-callsign category as

CADET could synthesize a function for 3 more instances than CVC4cex.

109

Performance analysis for 2-QBF instances We performed an experiment with

the SyGuS language as a representation language instead of QBF. We considered

QBF instances instead of DQBF as majority of our synthesis benchmarks could

reduced to QBF. As CVC4cex performed the best amongst the different tools for

BV-constrained synthesis for SyGuS instances, we considered the CVC4cex to eval-

uate the performance over 609 SyGuS language representation of QBF instances.

Table 9.4 represents the performance analysis. We performed experiments with

two settings: the same timeout (900s) as used for the tools in Chapter 9.2, and a

more relaxed timeout of 7200s. With the 900s timeout, CVC4cex could solve only 2

instances out of 609 total instances, whereas, Manthan preformed the best by syn-

thesizing the functions for 276 instances. With the 7200s timeout, CVC4cex could

not solve any new instances while Manthan solved another 80 instances. Hence, BV-

constrained synthesis is not an efficient approach for DQBF solving, which answers

question related to efficacy of DQBF as representation language.

Table 9.4: Program synthesis via functional synthesis: Instances solved for BV-
constrainted synthesis of QBF benchmarks. Total Benchmarks:609.

TO CVC4cex DepQBF CADET Manthan
900s 2 33 274 276
7200s 2 39 280 356

Chapter 10

Satisficing Synthesis

Most approaches for synthesis work on all-or-nothing paradigm — that is, they

attempt to synthesize a system that must satisfy all the constraints in the given

underlying specification, and if the synthesis engine could not come up with such a

system within the given resources such as memory or time, they would fail and not

return a system.

Recently, Peleg and Polikarpova [PP20] conjectured that all-or-nothing paradigm

is a critical reason for not achieving mainstream software development, and we

should let go of this conventional wisdom to handle real-world instances. Further-

more, they proposed an idea for best-effort synthesis to synthesize systems that

satisfy at least a portion of given underlying constraints. Our work takes a further

step in this direction and considers real-world scenarios in which a set of constraints

requires strict guarantees, whereas the remaining constraints could be considered

desirable behaviors, which could be violated if needed.

In a real-world setting, not all constraints have equal priorities. Some constraints

might be of higher priority and require strict guarantees than the other constraints.

For example, the synthesized controller of an autonomous vehicle must ensure that

the vehicle does not hit a bystander; arguably, one would consider such a constraint

a high-priority constraint. On the other hand, while we would ideally prefer the

vehicle not to have a sudden change in the speed and lane changes, such constraints

111

are desirable behaviors. Such scenarios also arise in other contexts: consider a

financial institution that needs to decide whom to give a bank loan. On one hand,

the institute must follow mandatory regulations such as non-discrimination based

on protected attributes. Furthermore, the financial models can inform the likelihood

of the loan being defaulted and therefore, an ideal system should agree as much as

possible with such financial models.

This provides motivation for a general notion wherein the end user has different

classes of constraints: hard constraints that must not be violated while satisfying

soft constraints as much as possible. In general, one would expect to have a quantifi-

able measure that captures the degree to which the system satisfies soft constraints.

A synthesis engine would be required to ensure that the system is able to meet

satisfying measures over soft constraints to a given threshold. We define the no-

tion of SatisficingSynth to capture the domain-agnostic synthesis with hard and soft

constraints as follows: Given a set of hard constraints, soft constraints, satisficing

measure, and threshold, synthesize a system such that:

• it provably satisfies the hard constraints,

• and achieves at least threshold level of satisficing measure over soft constraints.

As is evident, it would be desirable to allow different modalities for the spec-

ification of hard and soft constraints: we allow them to be specified via data and

logical formulas.

A natural question would be how to design an algorithmic technique for SatisficingSynth.

To this end, we build on recent progress in guess-check-repair paradigm in functional

synthesis [ACG+18, GRM20, GSRM21], and design a algorithmic framework, called

HSsynth, which can handle soft and hard constraints in different modalities. HSsynth

relies on advances in automated reasoning and formal methods for a proof-guided

repair and provable verification.

112

10.1 Overview

We provide a high-level overview of a framework to mitigate the problem of SatisficingSynth.

SatisficingSynth deals with a satisficing measure, which is defined as SM() that takes

two inputs, (i) a specification (say, ψ(X,Y)), and (ii) a function (say, G(X)) to com-

pute the following:

SM(ψ(X,Y), G(X)) :=
ModelCount((ψ(X,Y) ∧ (Y ↔ G(X)))↓X)

ModelCount(ψ(X,Y)↓X)
(10.1)

Now, let us define the problem under consideration, SatisficingSynth, formally as

follows:
Given (i) hard constraints φH(X,Y), (ii) soft constraints φS(X,Y), and (iii) a

satisficing threshold ε, where X is a set of inputs and Y is a set of outputs, the

objective is to synthesize a system F (X) such that following holds:

• ∀X(∃Y φH(X,Y)↔ φH(X,F (X))),

• SM(φS(X,Y), F (X)) ≥ ε.

The satisficing measure SM() essentially captures the number of input valua-

tions for which the soft constraints φS(X,Y) are satisfied by F (X), which could be

computed as per Equation 10.1.

There are many different scenarios can be encoded in our problem setting. Now, the

question is “how do we develop a system that must satisfy the given hard constraints

and achieves satisficing measure more than a certain threshold?”. Towards this, we

propose a framework called HSsynth to synthesize such systems. The overview of

HSsynth is shown in the Figure 10.1.

As shown in Figure 10.1, HSsynth first learns a candidate system F (X) with

φS(X,Y) and φH(X,Y). HSsynth then needs to check whether the candidate sys-

tem satisfies the hard constraints φH(X,Y) or not. If it does not satisfy the hard

constraints, HSsynth needs to repair the candidate system. Otherwise, HSsynth pro-

ceeds with checking whether satisficing measure SM() is greater than the threshold

113

Learn Candidate
System

φS(X,Y)φH(X,Y) ϵ

F (X) satisfy
φH(X,Y)?

Repair F (X)
w.r.t.

φH(X,Y)

Is SM(φS(X,Y), F (X)) ≥ ϵ?

Is repair
possible?

Repair F (X)
to increase SM()

F (X)
F (X) YES

NO

YES

NO

NO

YES

Figure 10.1: HSsynth for satisficing synthesis:

ε or not. If it is greater than ε, then HSsynth returns F (X). Otherwise, we need to

check if a repair exists that does not violate the hard constraints and could increase

SM(); if yes, the candidate system F (X) needs to undergo repair, else HSsynth

attempts to learn a different candidate system.

We now provide a high-level description of different components of HSsynth to

highlight the technical challenges.

Learn Candidate F (X): As discussed earlier, we can use advances in constrained

sampling and machine learning to learn the initial guess of system. Moreover, we

can use different underlying synthesizers to produce the candidate system F (X).

Considering the setting in which φS(X,Y) is given as data, we can learn a can-

didate system using a decision-tree-based classifier [GRM20, GRM21]. Similarly,

when φS(X,Y) is given as formulas, we can first generate the data as the satisfy-

ing assignments of relation φ(X,Y), where φ(X,Y) is the union of φS(X,Y) and

φH(X,Y) to use the similar decision-tree based approach to learn a candidate sys-

tem [GRM20]. We can also use different approximate synthesis engines to come up

with an initial F (X) [SAC+20].

Does F (X) satisfy φH(X,Y)?: Once we have a candidate system F (X), the

task is now to verify whether F (X) satisfies given the hard constraints or not. If

114

candidate system F (X) satisfies the hard constraints, φH(X,F (X)) must be True

wherever φH(X,Y) is True. To verify, HSsynth makes a SAT call on the following:

V (X,Y, Y ′) := φH(X,Y) ∧ ¬φH(X,Y
′) ∧ (Y ′ ↔ F (X)) (10.2)

The second and third terms in V (X,Y, Y ′) aim to determine a valuation of X where

the resulting output of the candidate system fails to meet the given constraints.

Additionally, the first term guarantees the existence of a valuation of Y that satisfies

the hard constraints for the valuation of X. Hence, if V (X,Y, Y ′) is UNSAT, it

indicates that F (X) complies with the hard constraints. On the other hand, if

V (X,Y, Y ′) is SAT, we have identified a counterexample that requires fixing.

Repair F (X) with respect to φH(X,Y): Let σ |= V (X,Y, Y ′) be the coun-

terexample corresponding to which HSsynth needs to repair F (X). We would like

to know the reason behind candidate system F (X) not satisfying hard constraints

with input valuations σ[X]. Towards this, HSsynth applies a proof-guided strategy

to repair F (X). The unsatisfiability core of formula M(X,Y) is employed to capture

the reason.

M(X,Y) := φH(X,Y) ∧ (Y ↔ F (X)) ∧ (X ↔ σ[X]) (10.3)

HSsynth uses unit clauses occurring in the UnsatCore of formula M(X,Y) that

corresponds to input literals to either strengthen or weaken the system F (X).

Is SM(φS(X,Y), F (X)) ≥ ε?: HSsynth now computes the satisficing measure

SM(φS(X,Y), F (X)) of candidate system F (X) using Equation 10.1. HSsynth

checks if SM() is lower bounded by given threshold ε or not.

Is repair possible?: If SM(φS(X,Y), F (X)) is less than ε, F (X) needs to be

repaired to satisfy more soft constraints in order to improve the satisficing measure.

We need a valuation of inputs X such that F (X) satisfies the hard constraints, but

115

do not satisfy φS(X,Y). Furthermore, we need to ensure that for the corresponding

valuation of X, there exists a valuation for Y that satisfy soft constraints. Therefore,

HSsynth makes an SAT call on the following:

U(X,Y, Y ′) := φS(X,Y) ∧ ¬φS(X,Y
′) ∧ φH(X,Y

′) ∧ (Y ′ ↔ F (X)) (10.4)

If U(X,Y, Y ′) is turnout to be UNSAT, there does not exists a valuation of X to

repair F (X) without falsifying the hard constraints. In the case U(X,Y, Y ′) is SAT,

HSsynth has a counterexample to repair F (X) in attempt to increase the satisficing

measure.

Repair F (X) to increase SM(): HSsynth has a counter example π, where π |=

U(X,Y, Y ′). HSsynth enumerates different UnsatCores of formula N(X,Y) in order

to attempt a proof-guided repair.

N(X,Y) := φS(X,Y) ∧ φH(X,Y) ∧ (Y ↔ F (X)) ∧ (X ↔ π[X]) (10.5)

HSsynth has different prospects for repair corresponding to each different UnsatCores

of N(X,Y). First, we must ensure that the proposed repair does not violate hard

constraints. Towards this, HSsynth makes a satisfiability call on Formula 10.2 with

each repair option. HSsynth would discard a repair if the corresponding Formula 10.2

turned out to be SAT. Finally, HSsynth computes the satisficing measure for the

remaining repair options. HSsynth has a greedy approach to increase the satisficing

measure as it picks the repair for which F (X) has the maximum satisficing measure

among others.

10.2 Approach

In this chapter, we provide a detailed algorithmic description HSsynth, whose pseu-

docode is presented in Algorithm 12. HSsynth takes soft constraint φS(X,Y), hard

constraints φH(X,Y) and a satisficing threshold ε.

116

Algorithm 12 HSsynth(φS(X,Y), φH(X,Y), ε)
1: F (X) ← LearnCandidate(φS(X,Y), φH(X,Y))
2: while ret = UNSAT do
3: ret, σ ← CheckSat(φH(X,Y) ∧ ¬φH(X,Y

′) ∧ (Y ′ ↔ F (X)))
4: if ret = SAT then
5: F (X) ← RepairHC(φH(X,Y), F (X), σ)
6: while True do
7: if SM(φS(X,Y), F (X)) < ε then
8: res, π ← CheckSat(φS(X,Y)∧¬φS(X,Y

′)∧φH(X,Y
′)∧ (Y ′ ↔ F (X)))

9: if res = SAT then
F (X), pos ← RepairGM(φS(X,Y), F (X), SM(,), π)

10: if res =UNSAT or pos =False then φS(X,Y)← φS(X,Y)∧(Y 6= F (X))
Goto line 1

11: elsereturn F (X)

Algorithm 12 assumes access to following subroutines:

1. LearnCandidate: It takes φS(X,Y), φH(X,Y) as input and outputs the initial

candidate system F (X). Let φ(X,Y) is union of φS(X,Y) and φH(X,Y).

If φ(X,Y) is provided as data, HSsynth uses a decision tree based method to

learn the candidate system. HSsynth considers the valuation of X on φS(X,Y)

as features and valuation of each y of Y as label to learn a decision tree for each

y. Candidate system F (X) is disjunction of each path in learned decision tree

with leaf node 1. If φ(X,Y) is given as a logical specification, HSsynth learns

a candidate system using functional synthesis approach [GRM20, GRM21].

HSsynth first generates the data using a constraint sampler. HSsynth consider

the uniformly generated satisfying assignments of φ(X,Y) as data to learn a

candidate system using decision tree based method.

2. CheckSat: It takes a formula as input and returns the outcome of a satisfiability

check on the formula. If the formula is SAT, CheckSat returns outcome as SAT,

and in addition to that it returns a satisfying assignment of the formula. If

the formula is UNSAT, it returns outcome as UNSAT and an empty list.

3. RepairHC: It takes the hard constraints φH(X,Y), and the candidate system

F (X) and a counterexample σ as inputs and returns a candidate system re-

117

paired with respect to the hard constraints. RepairHC is discussed in detailed

in Algorithm 13.

4. RepairGM: It takes the relational specification φS(X,Y), and the candidate

system F (X) and a counterexample π as inputs. If there exists a repaired

candidate system with respect to φS(X,Y) that does not falsify φH(X,Y)

and increase SM(,), RepairGM returns repaired F (X), and True. Otherwise,

it returns F (X) and False. RepairGM is discussed in detailed in Algorithm 14.

Algorithm 12 starts off by learning a candidate F (X) using given φS(X,Y) and

φH(X,Y) at line 1. At line 3, Algorithm 12 ask for a counterexample by calling sub-

routine CheckSat on the formula φH(X,Y)∧¬φH(X,Y
′)∧ (Y ′ ↔ F (X)). CheckSat

subroutine returns the outcome of satisfiability check and a satisfying assignment

(say σ) of the formula. Algorithm 12 repairs the candidate function F (X) to fix

counterexample σ by calling the subroutine RepairHC with input φH(X,Y), F (X),

and σ at line 5.

Algorithm 12 has another loop from line 6 to line 11, and it comes out of the

loop by either returning system F (X) which satisfies the hard constraints and has

SM() greater than ε at line 11 or asking for another candidate system F (X) at

line 10. Algorithm 7 measures if the satisficing measure SM() of candidate system

F (X) is greater than threshold ε at line 7, and if it does, Algorithm 12 returns a

system F (X) at line 11. Else, Algorithm 12 at line 8 again calls CheckSat with

input φS(X,Y)∧¬φS(X,Y
′)∧φH(X,Y

′)∧ (Y ′ ↔ F (X)). If CheckSat returns SAT

with satisfying assignment π, Algorithm 9 repairs candidate system F (X) by calling

subroutine RepairGM with inputs φS(X,Y), F (X) and π at line 9. If CheckSat

returns UNSAT or if RepairGM returns False, Algorithm 12 goes back to line 1

with relation φS(X,Y)∧(Y 6↔ F (X)). Algorithm 13 presents RepairHC. It assumes

access to following subroutine.

1. FindCore: It takes a formula as input and extracts the unsatisfiable core of the

formula. It returns a list of unit clauses C in the unsatisifiable core.

118

Algorithm 13 RepairHC(φH(X,Y), F (X), σ)
1: C ← FindCore(φH(X,Y) ∧ (Y ↔ F (X)) ∧ (X ↔ σ[X]))
2: β ← ∧

l∈C
l

3: if F (σ[X]) == 1 then F (X)← F (X) ∧ ¬β
4: elseF (X)← F (X) ∨ β
5: return F (X)

Algorithm 13 first calls FindCore with formula φH(X,Y)∧(Y ↔ F (X))∧(X ↔ σ[X])

at line 1. Algorithm 13 creates a formula β as conjunction of clauses in C, and checks

the output of system F (X) with valuation of X as per σ at line 3. If F (σ[X]) is 1,

then repaired F (X) is F (X) with conjunction of negation of β, else repaired F (X)

is F (X) with disjunction of β.

Algorithm 14 presents RepairGM. It assumes access to following subroutines:

1. CoreEnum: It takes an unsatisfiable formula and an integer as input K to

enumerate K many unsatisfiable cores of the given formula. Let the list of

unit clauses in each unsatisfiable core is C. CoreEnum adds C corresponding

to each unsatisfiable core to Clist and finally returns Clist.

2. FindRepair: It take a list of tuple as input where tuple is 〈float F, Formula S〉

and returns formula S corresponding to which F has maximum value among

all other tuples.

Algorithm 14 RepairGM(φS(X,Y), F (X), π)
1: Clist← CoreEnum(φS(X,Y) ∧ φH(X,Y) ∧ (Y ↔ F (X)) ∧ (X ↔ π[X]), K) ▷

Enumeration of K unsat cores Sys← 〈∅, ∅〉
2: for each C ∈ Clist do
3: β ← ∧

l∈C
l

4: rF (X)← ite((F (π[X]) == 1), F (X) ∧ ¬β, F (X) ∨ β)
5: ret, σ ← CheckSat(φH(X,Y) ∧ ¬φH(X,Y

′) ∧ (Y ′ ↔ rF (X)))
6: if ret = UNSAT then Sys← Sys.add(〈SM(φS(X,Y), rF (X)), rF (X)〉)
7: if Sys = 〈∅, ∅〉 then
8: return F (X), False

9: F (X)← FindRepair(Sys)
10: return F (X), True

Algorithm 14 first calls subroutine CoreEnum at line 1 with formula (φS(X,Y) ∧

119

φH(X,Y)∧(Y ↔ F (X)∧(X ↔ π[X]))) and an integerK to get a list of different Un-

satCores. Algorithm 14 then has a loop from line 2 to line 6 that iterates over differ-

ent UnsatCores of formula. Algorithm 14 at line 4 repairs F (X) by either strength-

ening or weakening depending on the valuation of F (π[X]) with respect to each Un-

satCore. Line 5 makes a CheckSat call to the formula φH(X,Y)∧¬φH(X,Y
′)∧(Y ′ ↔

rF (X)), where rF (X) represent an option for repaired F (X) with respect to an un-

satcore. If CheckSat returns UNSAT, line 6 adds the SM(φS(X,Y),F (X)) measure

with repaired F (X) and the repaired F (X) as a tuple to Sys.

If Sys is empty or not, RepairGM returns F (X) and False. Otherwise, Sys has

F (X) repaired with respect to different UnsatCore and their corresponding measure

respectively. Algorithm 14 finds repaired F (X) that has maximum SM(φS(X,Y),F (X))

measure by calling subroutine FindRepair with Sys as input at line 9. Finally, it

returns F (X) and True.

Algorithmic optimizations. When we have |Y | > 1, we could learn a system

for each yi in terms of input X and Y \ yi. However, we need to ensure that there

is no cyclic dependencies among Y variables, that is, if fi system corresponding to

yi is dependent on yj, then fj is not allowed to depend on yi. Note that, we can

have the synthesized function finally in terms of only X as we can expand functions

corresponding to yj’s in the definition of yi. Let yi ≺d yj denotes that fi depends on

yj. A system vector F where fi depends on yj is valid vector if there exists a partial

order ≺d over {y1, . . . , y|Y |}. We can obtain a valid linear extension, TotalOrder, of

partial order ≺d in accordance to F .

In such a case, we need to follow the TotalOrder while finding candidates and

repairing them. We employ approach proposed by Golia et al. [GRM20], and use

MaxSAT solver to find the candidates to repair. For RepairHC, we use φH(X,Y)∧

(X ↔ σ[X]) as hard constraints and (Y ↔ σ[Y ′]) as soft constraints to use a

MaxSAT solver to find candidates, where σ is a satisfying assignment of formula 10.2.

All Y variables for which (Y ↔ σ[Y ′]) are dropped by MaxSAT solver to find a sat-

isfying assignments, function corresponding to which are candidates that may need

120

repair. Similarly, for RepairGM, we use φS(X,Y)∧ (X ↔ π[X]) as hard constraint

and (Y ↔ π[Y ′]) as softconstraint to call MaxSAT solver, where π is a satisfying

assignment of formula 10.4. Let ind represents Y variables whose corresponding

functions may needed to be repaired.

Furthermore, when |Y | > 1, Formula 10.3 and 10.5 should be changed to en-

sure the acyclic dependencies among Y variables by constraining over Ŷ , which is

the subset of Y variables and TotalOrder[index(yi) + 1], . . . , T otalOrder[|Y |]. For-

mula 10.3 is modified as follows:

M(X,Y) := φH(X,Y) ∧ (Ŷ ∪ yi ↔ F (X)) ∧ (X ↔ σ[X]) (10.6)

Similarly, formula 10.5 is modified as:

N(X,Y) := φS(X,Y) ∧ φH(X,Y) ∧ (Ŷ ∪ yi ↔ F (X)) ∧ (X ↔ π[X]) (10.7)

Now, modified formulas 10.6 and 10.7 could be SAT, and in that case, we need

to look for other candidates to repair. To this end, assume that while reparing

candidates to satisfy the hard constraints, Formula 10.6 turns out to be SAT, and

let ρ be the satisfying assignment, then all yj variables for which ρ[yj] 6= σ[yj]

and yj 6∈ Ind are added to the queue of potential candidates to repair. Similarly,

additional candidates are considered to repair if while improving satisficing measure,

Formula 10.7 turned out to be SAT.

If the formulas are UNSAT, then we extract the UnsatCore and use the core to

repair the candidate as discussed in Algorithm 13 and 14.

We now illustrate our algorithm through an example.

Example 10.1. Let us consider X = {x1, x2} as inputs and Y = {y1, y2} as outputs.

Given following: (i) φS(X,Y) : y1 ↔ x1 ∨ x2, (ii) φH(X,Y) : y2 ↔ ((x1 ∨ x2) ∧

(¬x1∨¬x2)), and (iii) satisficing threshold ε : 80%, that is, ε is set to 80%, synthesize

F (X) that satisfies φH(X,Y), and have SM(φS(X,Y), F (X)) ≥ ε.

Learn candidate: HSsynth first comes up with a candidate system for y1 and y2.

121

As both hard and soft constraints are given as specification, we can generate

samples of the specification, which would be considered as data to learn the

candidate functions using decision trees. Let us consider the initial system as

F (X) : 〈f1(X) : x1, f2(X) : ¬x1 ∧ x2〉.

Does F(X) satisfy φH(X,Y)?: HSsynth makes a CheckSat subroutine call on for-

mula y2 ↔ ((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)) ∧ ¬(y′2 ↔ ((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2))) ∧

(y′2 ↔ (¬x1 ∧ x2)). CheckSat returns SAT and a satisfying assignment σ as

〈x1 ↔ 1, x2 ↔ 0, y1 ↔ 1, y2 ↔ 1, y′1 ↔ 1, y′2 ↔ 0〉.

Repair F(X) with respect to φH(X,Y): HSsynth calls subroutine RepairHC with

φH(X,Y), F (X) and σ. RepairHC calls FindCore with (y2 ↔ ((x1∨x2)∧(¬x1∨

¬x2))) ∧ (y2 ↔ (¬x1 ∧ x2)) ∧ (x1 ↔ 1) ∧ (x2 ↔ 0) ∧ (y1 ↔ 1) ∧ (y2 ↔ 0).

As FindCore returns the list of unit clauses occurred in the unsatisfiable core,

let us assume FindCore returns [x1,¬x2]. Repair formula β is x1 ∧ ¬x2, and

as σ[y′2] is 0, the repaired f2 is f2 ∨ β. Now, F (X) : 〈f1(X) : x1, f2(X) :

(¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)〉.

The repaired F (X) satisfies φH(X,Y), and CheckSat returns UNSAT.

Is SM(φS(X,Y), F (X)) ≥ 80%: We use Formula 10.1 to compute SM(). We used

model counter to compute the ModelCount((y1 ↔ x1∨x2)∧(y1 ↔ x1)∧(y2 ↔

(¬x1 ∧ x2) ∨ (x1 ∧ ¬x2))↓x1,x2) is 3, and ModelCount((y1 ↔ x1 ∨ x2)↓x1,x2) is

4. Therefore, SM() is 75%, and we need to repair F (X).

Is repair possible?: In order to check if there exists a repair that do satisfy the

φH(X,Y), HSsynth makes a CheckSat call on (y1 ↔ x1 ∨ x2) ∧ ¬(y′1 ↔ x1 ∨

x2)∧y′2 ↔ ((x1∨x2)∧ (¬x1∨¬x2))∧y′1 ↔ x1∧ (y′2 ↔ (¬x1∧x2)∨ (x1∧¬x2)).

CheckSat returns SAT with a counterexample π as 〈x1 ↔ 0, x2 ↔ 1, y1 ↔

1, y2 ↔ 1, y′1 ↔ 0, y′2 ↔ 1〉.

Repair F(X) to increase SM(): Again, HSsynth enumerates different UnsatCore

of (y2 ↔ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)) ∧ (y1 ↔ x1 ∨ x2) ∧ (y1 ↔ x1) ∧ (x1 ↔

122

0) ∧ (x2 ↔ 1). HSsynth picks UnsatCore as [¬x1, x2]. Repair formula β is

¬x1 ∧ x2, and as π[y′1] is 0, the repaired f1 is f1 ∨ β. The repaired candidates

don’t falsify the hard constraints. Now, F (X) : 〈f1(X) : x1∨(¬x1∧x2), f2(X) :

(¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)〉.

Now, with repaired F (X), the satisficing measure is greater than 80%. HSsynth

returns F (X).

10.3 Experimental Results

The objective of the experimental evaluation is to show that the proposed method

HSsynth is adaptable in different settings. In regards to that, we considered the

following underlying cases: (i) soft and hard constraints as formulas, (ii) soft con-

straints as data, and hard constraints as a formula. The remaining two cases, (iii)

soft and hard constraints as data, (iv) soft constraints as a formula, and hard con-

straints as data, could be converted into the first two settings by learning a formula

from the given hard constraints.

Setup: All our experiments were conducted on a high-performance computer clus-

ter with each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM,

with a memory limit set to 4GB per core. All tools were run in a single-threaded

mode on a single core. We considered the satisficing threshold as 75%.

Tools: We used python-sat(pysat) library [IMM18] to get a satisfying assign-

ment and to encode learned decision trees to CNF formula. We used MUSER2

to find group minimal UnsatCore [BMS12], and MUST to enumerate different Un-

satCores [BČ20]. We used ApproxMC to compute the approximate model count of

a given formula [SM19]. We used CMSGen to generate the samples to learn an initial

system [GSCM21]. We used Scikit learn library to learn decision trees to synthesize

candidate F (X) [skl, PVG+].

123

In particular, we sought to answer the following questions for each of the afore-

mentioned cases as applicable:

• Is the performance of HSsynth comparable to the complete synthesis of the

specification, where specification includes both hard and soft constraints?

• how good is the system synthesized by HSsynth?

Summary: Considering both φS(X,Y) and φH(X,Y) as formula, HSsynth takes

less time 2× time than the complete synthesis for 57% of our benchmarks. Moreover,

for more than 67% of our benchmarks in this setting, the satisficing measure of the

synthesized system by HSsynth is greater than 95%. For the remaining two settings,

HSsynth took less than 20 seconds to repair the system, and the satisficing measure

of the synthesized system was greater than 80% for almost all considered datasets

and hard constraints.

φS(X,Y) as data and φH(X,Y) as formula

Setup: We considered two datasets: (i) UCI Adult [DG+17] (ii) Ricci [McG10].

The two datasets provided variety in terms of data sizes, as UCI Adult data set

has 32500 data entries, whereas Ricci have 118 data entries. Adult data is about

to determine whether a person makes over 50K a year or not, and it has attributes

like workclass, occupation, education, capital-gain, gender, and etc. On the other

hand, Ricci data set is about the firefighter promotion exam and has attributes like

race, position, oral exam score, written exam score, etc. We considered different

hard constraints for each considered dataset. Data entries of corresponding to each

dataset are considered as soft-constraints φS(X,Y).

Adult Dataset: The hard constraints φH(X,Y) are considered as follows:

• HS1: If its a Asian-par islander race female in 0-25 age, have a working spouse

and works in craft repair then she must be getting ≥ 50K.

124

Table 10.1: Satisificing synthesis: Results of different dataset when φH(X,Y) is consid-
ered as formulas. Time in seconds.

Dataset Hard
Constraints

SM()
Measure

Repair
Itr

Repair
Time

Adult
HS1 75% 1 5.45
HS2 81.9% 2 10.97
HS3 81.8% 4 19.31

Ricci HS1 96.6 % 2 0.03
HS2 96.6 % 4 0.07

• HS2: If they are a self-employed with bachelor education and have age > 50,

then they must be getting ≥ 50K.

• HS3: If they have workclass as local-gov, and they have occupation either as

handlers-cleaners or in transportation, then they must be getting ≤ 50K.

Ricci Dataset: We considered the following hard constraints:

• HS1: if the position is Lieutenant and have more than 75 in written and oral

exam then must recruit.

• HS2: if the position is Lieutenant and they have more than 75 in written,

also the combine score is more than 80 then must recruit, and if they have

less than 25 in written, also the combine score is less than 25 then must not

recruit.

Results: Table 10.1 represents the experimental details for different data set re-

spectively. In each table column 1 presents the hard constraints under consideration.

Column 2 presents satisficing measure SM(φS(X,Y), F (X)). Column 4 presents the

required number of repairs needed for the system. Finally, column 5 present the

repair time. Satisficing measure of F (X) without any repair was 81.9% and 96.6%

for Adult and Ricci dataset respectively.

As shown in Table 10.1, we could repair the system to meet the hard constraints

within 4 repairs for both the datasets, and it would need less than 20 seconds. Note

125

that it is not the case that the more number of repair leads to decrease in the satis-

ficing measure, but it is completely dependent on the underlying hard constraints—

considering the case of HS2 of adult dataset, there is no difference in the satisficing

measure with or without any repair; however, the underlying system needed to be

repaired to provably satisfy hard constraints.

Ricci dataset presents our proposed method in a good light, as we usually need

the proposed hard constraints or rules in the recruitment purpose and the data

provided to us also satisfies the given hard constraints. However, our synthesized

system needs to undergo repair. As shown in Table 10.1, HS1 and HS2 with ricci

dataset need respectively 2 and 4 repairs to ensure that the learned system must

satisfy the hard constraints, however, we did not observe any change in satisficing

measure of F (X) with or without repair.

φS(X,Y) and φH(X,Y) as formulas

Setup: We considered Hacker’s delight instances that are fast bit-level algorithms [syg19].

We considered interesting benchmarks that identifies the rightmost one bit and count

the number of trailing zeros. We experimented with different varying input size from

8 bits to 512 bits. Three different hard constraints are considered for each instance.

The following should hold on all input valuations for synthesized system:

• HS1: middle-bit output should be correct.

• HS2: most significant bit output should be correct.

• HS3: five most significant bit output should be correct.

The remaining bit’s output should be correct on all input valuations are con-

sidered as soft-constraint corresponding to each hard-constraint. Therefore, we ex-

perimented with 48 benchmarks (2 instances × 8 varying input bits × three hard

constraints).

HSsynth compared with functional synthesis engine Manthan that generates prov-

able correct functions for φ(X,Y) where φ(X,Y) is union of φS(X,Y) and φH(X,Y).

126

Table 10.2: Satisificing synthesis: Time taken by Manthan and HSsynth to synthesize
function. Timeout (TO) is 1800 seconds.

Benchmarks Manthan HSsynth
HS1 HS2 HS3

hd-04-8bits 2.64 3.51 3.67 3.65
hd-08-8bits 2.66 3.47 3.59 3.54
hd-08-16bits 3.43 3.82 4.04 3.91
hd-04-16bits 4.29 3.73 3.96 4.01
hd-08-32bits 4.83 4.49 5.24 5.82
hd-04-32bits 6.75 4.47 9.47 5.47
hd-08-64bits 21.19 8.7 10.85 14.76
hd-04-64bits 24.94 14.53 7.97 10.5
hd-08-128bits 77.1 36.62 25.86 50.73
hd-04-128bits 213.55 35.01 40.71 40.69
hd-08-256bits 569.08 104.56 152.33 198.47
hd-04-256bits 837.56 100.08 130.92 231.03
hd-08-272bits 841.22 129.23 157.08 177.66
hd-04-272bits 945.51 129.44 134.47 189.63
hd-04-512bits TO 494.48 928.27 915.12
hd-08-512bits TO 529.05 1174.05 1466.38

Results: Table 10.2 presents the results for Hacker’s delight benchmarks with

different input sizes. Column 2 presents the time taken to synthesize F (X) by

Manthan. Column 3,4,5 presents the time taken by HSsynth to synthesize F (X)

that have SM(φS(X,Y), F (X)) ≥ ε and satisfies hard constraints HS1, HS2, HS3

respectively. As shown in Table 10.2 for inputs with bitsize less than 32, we observe

that Manthan is faster than HSsynth, as HSsynth needs additional time to compute

satisficing measure, check for repair, and like. However, as we increase the bitsize,

Manthan is much slower than HSsynth. In fact, for inputs with 512 bits, Manthan

was not able to synthesize the function within the given time and memory limit,

whereas, HSsynth was able to return the synthesized system within 1500 seconds.

Figure 10.2 presents the satisficing measure of synthesized system by HSsynth; on

〈y〉-axis presents the satisficing measure and 〈x〉-axis presents the different bench-

marks. For 21 out of 48 benchmarks HSsynth synthesized system with satisficing

measure greater than 98%. Even though the satisficing threshold ε is set to 75%,

the minimum measure among all synthesized system is 81.25%.

127

Figure 10.2: Satisificing synthesis: Showing satisficing measure of F (X) synthesized by
HSsynth for hard constraints HS1,HS2 and HS3.

φS(X,Y) and φH(X,Y) as data

Setup: We considered two datasets: (i) UCI Adult [DG+17] (ii) Ricci [McG10],

and divided them into (i) soft constraints and (ii) hard constraints. We first learned

a overfitted system with only hard constraint data and considered the equivalent

formula of learned model as our φH(X,Y) formula. We considered two cases (i)

HS1: 10% of data, and (ii) HS2: 20% of data as hard constraints.

Table 10.3: Satisificing synthesis: Results of Adult and Ricci dataset with hard con-
straints as data. Time in seconds.

Dataset Hard
Constraints

SM()
Measure

Repair
Itr

Repair
Time

Adult HS1 81.4% 3 16.35
HS2 82.1% 3 13.30

Ricci HS1 86.7 % 1 0.017
HS2 86.6% 1 0.036

Results: Table 10.3 shows the results with Adult dataset and Ricci dataset. HSsynth

is able to repair learned system to satisfy formula learned from data considered as

hard constraint. Even through the threshold is set to 75%, we get the satisficing

measure more than 80% for both the dataset. HSsynth was able to repair the system

in less than 20 seconds for all the cases.

Part V

Conclusion

128

129

Chapter 11

Concluding Remarks

This thesis focuses on functional synthesis, a fundamental problem in computer

science with a wide range of applications including but not limited to: hardware

synthesis, software synthesis, synthesis in formal verification, and synthesis in control

system. Functional synthesis has been studied for over 150 years, dating back to

Boole in 1850’s, yet scalability remains a core challenge. To tackle the scalability

challenge, we relied on artificial intelligence and formal methods.

We developed a scalable data-driven approach, Manthan, that combines advances

in formal methods and machine learning to significantly improve upon the state-of-

the-art. Our approach uses constrained sampling to generate data, which is then

fed into a machine learning pipeline to generate an initial candidate system. We

leverage automated reasoning to repair the candidate system and synthesize a final

system that provably satisfies the given specification.

Manthan was able to synthesize functions for 509 instances out of a total of

609 standard suites of instances — to give a perspective, the prior state-of-the-art

techniques ranged from 210 to 280 instances. Manthan improved the state-of-the-

art by solving an additional 40% of instances. Furthermore, we lift the data-driven

approach to contrive modular designs that enabled Manthan to push the envelope

in synthesis with explicit input dependencies, and it could handle additional 26

instances for which the state-of-the-art tools could not synthesize a system.

Motivated by the impressive scalability, we turned our attention to program

131

synthesis. We demonstrated that the problem of program synthesis reduces to func-

tional synthesis when there are no syntactic restrictions. We investigated the use

of T-constrained synthesis where T stands for theory, and showed its reduction to

DQF(T). Moreover, we focused on the special case of T = BV and its reduc-

tion to DQBF. We also note that grammar can serve both as a tool for improving

solver efficiency and as a means for specifying certain properties, such as information

flow leakage. Our empirical analysis indicates that T-constrained synthesis can im-

prove performance compared to syntax-guided program synthesis approaches, and

DQF(T) solvers perform similarly to domain-specific techniques. These results sug-

gest the potential benefits of further research into DQB(T) as a general-purpose

representation language for program synthesis.

Additionally, as a generalization from functional synthesis, we introduced HSsynth,

a general purpose framework for synthesizing systems that provably satisfy hard

constraints, with a satisficing measure of the synthesized system in regards to soft

constraints greater than a certain threshold. The analysis shows that HSsynth is

scalable and can achieve a satisficing measure greater than 80% for all considered

settings of constraints.

In summary, the thesis makes several novel contributions to the field of functional

synthesis. The proposed data-driven approach is new and innovative techniques that

can greatly improve the performance of functional synthesis both with or without

explicit dependencies. The Henkin synthesizer and the framework for synthesizing

systems that provably satisfy hard constraints are significant contributions. Overall,

the proposed approach and tools have a wide range of applications and could open

up several exciting possibilities for future research at the intersection of machine

learning, constrained sampling, and automated reasoning.

Chapter 12

Future Directions

We end the thesis by presenting a list of several promising avenues for future research.

We believe that exploring these directions could be crucial and lead to significant

advancements. Furthermore, progress in these areas has the potential to unlock

various real-world applications.

Theoretical analysis. The immediate future direction would be to analyze the

technique proposed from a theoretical point of view. While the thesis provides

significant empirical evidence on the importance of different components used in

the data-driven approach for functional synthesis, it is also essential to consider

the theoretical analysis regarding these components. For example, in Chapter 7.2,

we discussed empirically that the quality of the generated data is a critical factor

in synthesizing functions efficiently. However, we still lack knowledge about the

ideal distribution from which we should sample the data points. Additionally, we

need to theoretically determine the bound on the number of data points required to

learn ‘good” candidate functions. Conducting a theoretical analysis of the empirical

evidence is one of the future directions to explore.

Approximate functional synthesis. In this thesis, we have explored algorithmic

improvements for functional synthesis. As we move forward, it is important to define

the concept of approximate functional synthesis. One initial step in this direction

133

was the introduction of the notion of satisficing synthesis. Now, our next objective

could be to propose techniques that can provide probabilistic Approximate Correct

(PAC) guarantees for approximate functional synthesis. By achieving this, we can

apply these techniques to scenarios where having an error bound on the synthesized

function is crucial.

Search for optimal functions. In this thesis, our focus has been on synthesizing

arbitrary functions that satisfy a given specification. However, there is an exciting

opportunity to formalize the notion of function quality, considering factors such

as size, the use of specific gates, readability, applicability to specific domains, and

more. It would be intriguing to explore whether we can guide the synthesis technique

towards finding the optimal function that meets these quality criteria. By doing so,

we can enhance the overall effectiveness and efficiency of the synthesis process.

Beyond synthesizing functions. In the realm of SAT solving, we initially had

excellent SAT solvers that could find satisfying assignments for given specifications.

Over time, these solvers evolved to not only find assignments but also count them,

sample them, and perform other advanced operations. These advancements have

paved the way for various applications, with functional synthesis being one of them.

Following a similar trajectory, now that we have efficient synthesizers for generating

single functions, it is worth considering the exploration of enumerating functions,

randomly sampling functions, and counting functions. This expansion poses signif-

icant theoretical complexity challenges, but it undoubtedly holds the potential for

numerous practical applications.

Functional synthesis modulo theory. Over the past two decades, we have wit-

nessed remarkable advancements in the field of satisfiability modulo theory (SMT)

solvers. These solvers have demonstrated their ability to handle various underly-

ing theories, including strings, bitvectors, and linear real arithmetic. However, in

order to extend functional synthesis beyond propositional logic and address real-

134

world applications effectively, it is necessary to incorporate machine learning-based

techniques into the process of learning and formal method based candidate repai

for SMT. To accomplish this, a key area of focus should be the development of ef-

ficient constrained samplers and counters for SMT, enabling synthesis for different

underlying theories.

A key contribution of the thesis is successful integration of machine learning and

formal methods, resulting in trustworthy scalability. Looking ahead, it is important

to explore further applications where machine learning can be leveraged to find rapid

solutions, while relying on formal methods to ensure correctness. By combining the

strengths of both machine learning and formal methods, we can continue to advance

in the pursuit of scalable and trustworthy solutions across various domains.

References

[AAC+19] S Akshay, Jatin Arora, Supratik Chakraborty, S Krishna, Divya
Raghunathan, and Shetal Shah. Knowledge compilation for boolean
functional synthesis. In Proc. of FMCAD, 2019.

[ABJ+13a] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin,
Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Proc. of FMCAD, 2013.

[ABJ+13b] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin,
Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Proc. of FMCAD, 2013.

[ACG+18] S Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, and
Shetal Shah. What’s hard about boolean functional synthesis? In Proc.
of CAV, 2018.

[ACJS17] S Akshay, Supratik Chakraborty, Ajith K John, and Shetal Shah. To-
wards parallel boolean functional synthesis. In Proc. of TACAS, 2017.

[ARU17] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enu-
merative program synthesis via divide and conquer. In Proc. of TACAS,
2017.

[BČ20] Jaroslav Bendík and Ivana Černá. Must: minimal unsatisfiable subsets
enumeration tool. In Proc. of TACAS. Springer, 2020.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Proc. of TACAS, 1999.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare
Tinelli. CVC4. In Proc. of CAV, 2011.

[BCJ14] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong R Jiang.
Henkin quantifiers and boolean formulae: A certification perspective
of DQBF. Proc. of Theoretical Computer Science, 2014.

[Bet56] Evert W Beth. On padoa’s method in the theory of definition. Journal
of Symbolic Logic, 1956.

136

[BGHZ15] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn.
Flashrelate: extracting relational data from semi-structured spread-
sheets using examples. ACM SIGPLAN Notices, 2015.

[Bie08] Armin Biere. PicoSAT essentials. Proc. of JSAT, 2008.

[BJ11] Valeriy Balabanov and Jie-Hong R Jiang. Resolution proofs and skolem
functions in QBF evaluation and applications. In Proc. of CAV, 2011.

[BJ12] Valeriy Balabanov and Jie-Hong R Jiang. Unified QBF certification
and its applications. In Proc. of FMCAD, 2012.

[BKS14] Roderick Bloem, Robert Könighofer, and Martina Seidl. Sat-based
synthesis methods for safety specs. In Proc. of VMCAI, 2014.

[BLS11] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elim-
ination for QBF. In Proc. of CADE, 2011.

[BMS12] A. Belov and J. Marques-Silva. MUSer2 : An efficient mus extractor,
system description. Proc. of JSAT, 2012.

[Boo47] George Boole. The mathematical analysis of logic. Philosophical Li-
brary, 1847.

[BPR16] Rohan Bavishi, Awanish Pandey, and Subhajit Roy. To be precise:
regression aware debugging. In Proc. of OOPSLA, 2016.

[Bra89] Robert K Brayton. Boolean relations and the incomplete specification
of logic networks. In Proc. of VLSID, 1989.

[BS89] Robert K Brayton and Fabio Somenzi. An exact minimizer for boolean
relations. In Proc. of ICCAD, 1989.

[CFM+15] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A
Seshia, and Moshe Y Vardi. On parallel scalable uniform SAT witness
generation. In Proc. of TACAS, 2015.

[CFTV18] Supratik Chakraborty, Dror Fried, Lucas M Tabajara, and Moshe Y
Vardi. Functional synthesis via input-output separation. In Proc. of
FMCAD, 2018.

[CHOP13] Krishnendu Chatterjee, Thomas A Henzinger, Jan Otop, and Andreas
Pavlogiannis. Distributed synthesis for ltl fragments. In Proc. of FM-
CAD, 2013.

[CM19] Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform sam-
plers. In Proc. of AAAI, 2019.

[CMF19] Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer spec-
ification synthesis. In Proc. of ESEC/FSE, 2019.

[CMV13] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scalable
and nearly uniform generator of SAT witnesses. In Proc. of CAV, 2013.

137

[CMV14] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Balancing
scalability and uniformity in SAT witness generator. In Proc. of DAC,
2014.

[Coo23] Stephen A Cook. The complexity of theorem-proving procedures.
In Logic, Automata, and Computational Complexity: The Works of
Stephen A. Cook, pages 143–152. 2023.

[DG+17] Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.
Available at https://archive.ics.uci.edu/.

[DLBS18] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen.
Efficient sampling of SAT solutions for testing. In Proc. of ICSE, 2018.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proc. of TACAS, 2008.

[DPV21] Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. ProCount:
Weighted projected model counting with graded project-join trees. In
Proc. of SAT, 2021.

[EGSS12] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman.
Uniform solution sampling using a constraint solver as an oracle. In
Proc. of UAI, 2012.

[END+18] P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and
P Madhusudan. Horn-ICE learning for synthesizing invariants and
contracts. In Proc. of OOPSLA, 2018.

[FG19] Grigory Fedyukovich and Aarti Gupta. Functional synthesis with ex-
amples. In Proc. of CP, 2019.

[FKB12] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. A DPLL al-
gorithm for solving DQBF. Proc. POS, 2012.

[FKBV14] Andreas Fröhlich, Gergely Kovásznai, Armin Biere, and Helmut Veith.
idq: Instantiation-based DQBF solving. In Proc. of SAT, 2014.

[FTV16] Dror Fried, Lucas M Tabajara, and Moshe Y Vardi. BDD-based
boolean functional synthesis. In Proc. of CAV, 2016.

[Gar79] Michael R Garey. A guide to the theory of np-completeness. Computers
and intractability, 1979.

[GLMN14] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider.
ICE: A robust framework for learning invariants. In Proc. of CAV,
2014.

[GLST05] Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael Theobald.
Proof-guided underapproximation-widening for multi-process systems.
In Proc. of POPL, 2005.

138

[GNMR16] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan
Roth. Learning invariants using decision trees and implication coun-
terexamples. In Proc. of POPL, 2016.

[Gre81] Cordell Green. Application of theorem proving to problem solving. In
Readings in Artificial Intelligence. 1981.

[GRM] Priyanka Golia, Subhajit Roy, and Kuldeep S Meel. Good enough
synthesis with hard constraints. Under Review.

[GRM20] Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel. Manthan: A data
driven approach for boolean function synthesis. In Proc. of CAV, 2020.

[GRM21] Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel. Program synthesis
as dependency quantified formula modulo theory. In Proc. of IJCAI,
2021.

[GRM23] Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel. Synthesis with
explicit dependencies. In Proc. of DATE, 2023.

[GRS+13] Karina Gitina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph
Scholl, and Bernd Becker. Equivalence checking of partial designs using
dependency quantified boolean formulae. In Proc. of ICCD, 2013.

[GSCM21] Priyanka Golia, Mate Soos, Sourav Chakraborty, and Kuldeep S. Meel.
Designing samplers is easy: The boon of testers. In Proc. of FMCAD,
2021.

[GSRM19] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S Meel.
WAPS: Weighted and projected sampling. In Proc. of TACAS, 2019.

[GSRM21] Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, and Kuldeep S.
Meel. Engineering an efficient boolean functional synthesis engine. In
Proc. of ICCAD, 2021.

[GWR+15] Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph
Scholl, and Bernd Becker. Solving DQBF through quantifier elimina-
tion. In Proc. of DATE, 2015.

[Hen61] Leon Henkin. Some remarks on infinitely long formulas, infinitistic
methods (proc. sympos. foundations of math., warsaw, 1959), 1961.

[HLR12] Jiawei Huang, John Lach, and Gabriel Robins. A methodology for
energy-quality tradeoff using imprecise hardware. In Proc. of DAC.
IEEE, 2012.

[HPSS18] Holger H Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider.
Portfolio-based algorithm selection for circuit QBFs. In Proc. of CP,
2018.

[HQSW20] Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang.
Reconciling enumerative and deductive program synthesis. In Proc. of
PLDI, 2020.

139

[HSB14] Marijn JH Heule, Martina Seidl, and Armin Biere. Efficient extraction
of skolem functions from QRAT proofs. In Proc. of FMCAD, 2014.

[IMM18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT:
A Python toolkit for prototyping with SAT oracles. In Proc. of SAT,
2018.

[Jan18a] Mikoláš Janota. Circuit-based search space pruning in QBF. In Proc.
of SAT. Springer, 2018.

[Jan18b] Mikoláš Janota. Towards generalization in QBF solving via machine
learning. In Proc. of AAAI, 2018.

[JBS+07] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and
Christoph M Wintersteiger. A first step towards a unified proof checker
for QBF. In Proc. of SAT, 2007.

[JKL20] Jie-Hong R. Jiang, Victor N. Kravets, and Nian-Ze Lee. Engineering
change order for combinational and sequential design rectification. In
Proc. of DATE, 2020.

[JMF14] Satoshi Jo, Takeshi Matsumoto, and Masahiro Fujita. SAT-based au-
tomatic rectification and debugging of combinational circuits with lut
insertions. Proc. of IPSJ T-SLDM, 2014.

[JMS11] Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm
for 2QBF. In Proc. of SAT, 2011.

[JSC+15] Ajith K John, Shetal Shah, Supratik Chakraborty, Ashutosh Trivedi,
and S Akshay. Skolem functions for factored formulas. In Proc. of
FMCAD, 2015.

[KHDR21] Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps.
Semantics-guided synthesis. In Proc. of POPL, 2021.

[KMD+22] Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas
Reps, and Subhajit Roy. Synthesizing abstract transformers. In Proc.
of OOPSLA, 2022.

[Knu15] Donald E Knuth. The art of computer programming, Volume 4, Fascicle
6: Satisfiability. Addison-Wesley Professional, 2015.

[Kol32] Andrei N Kolmogorov. „zur deutung der intuitionistischen logik math-
ematische zeitschrift35. English translation in VM Tikhomirov (ed.)
Selected Works of AN Kolmogorov, 1932.

[KS92] Henry A Kautz and Bart Selman. Planning as satisfiability. In Proc.
of ECAI, 1992.

[KS00] James H Kukula and Thomas R Shiple. Building circuits from relations.
In Proc. of CAV, 2000.

[L1̈0] Leopold Löwenheim. Über die auflösung von gleichungen im logischen
gebietekalkul. Mathematische Annalen, 1910.

140

[LB10] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF
solver. Proc. of JSAT, 2010.

[LE17] Florian Lonsing and Uwe Egly. Depqbf 6.0: A search-based QBF solver
beyond traditional QCDCL. In Proc. of CADE, 2017.

[LG] B. Logic and V Group. ABC: A system for sequential synthesis and
verification. Available at http://www.eecs.berkeley.edu/~alanmi/
abc/.

[LM08] Jérôme Lang and Pierre Marquis. On propositional definability. Arti-
ficial Intelligence, 2008.

[McG10] Ann C McGinley. Ricci v. destefano: A masculinities theory analysis.
Harv. JL & Gender, 2010.

[MM00] Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT
problem. Journal of Automated Reasoning, 2000.

[MML14] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A
modular MaxSAT solver. In Proc. of SAT, 2014.

[MSLM09] Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Handbook of satisfiability. 2009.

[MW71] Zohar Manna and Richard J Waldinger. Toward automatic program
synthesis. Communications of the ACM, 1971.

[NLBR14] Kumud Nepal, Yueting Li, R Iris Bahar, and Sherief Reda. Abacus: A
technique for automated behavioral synthesis of approximate comput-
ing circuits. In Proc. of DATE, 2014.

[NPL+12] Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and
Armin Biere. Resolution-based certificate extraction for QBF. In Proc.
of SAT, 2012.

[PMNS19] Saswat Padhi, Todd D. Millstein, Aditya V. Nori, and Rahul Sharma.
Overfitting in synthesis: Theory and practice. In Proc. of CAV, 2019.

[PP20] Hila Peleg and Nadia Polikarpova. Perfect is the enemy of good: Best-
effort program synthesis. Leibniz international proceedings in infor-
matics, 2020.

[PRA01] Gary Peterson, John Reif, and Salman Azhar. Lower bounds for mul-
tiplayer noncooperative games of incomplete information. Computers
& Mathematics with Applications, 2001.

[PSY18] Hila Peleg, Sharon Shoham, and Eran Yahav. Programming not only
by example. In Proc. of ICSE, 2018.

[PVG+] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning research.

141

[qbfa] QBF solver evaluation portal 2017. Available at http://www.qbflib.
org/qbfeval17.php.

[qbfb] QBF solver evaluation portal 2018. Available at http://www.qbflib.
org/qbfeval18.php.

[qbfc] QBF solver evaluation portal 2020. Available at http://www.qbflib.
org/qbfeval20.php.

[Qui86] J. Ross Quinlan. Induction of decision trees. Proc. of Machine learning,
1986.

[Rab17] Markus N Rabe. A resolution-style proof system for DQBF. In Proc.
of SAT, 2017.

[Rab19] Markus N Rabe. Incremental determinization for quantifier elimination
and functional synthesis. In Proc. of CAV, 2019.

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark Barrett. Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In Proc. of CAV, 2015.

[RSS21] Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. Certified
DQBF solving by definition extraction. In Proc. of SAT, 2021.

[RT15] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF
solver. In Proc. of FMCAD, 2015.

[RTRS18] Markus N Rabe, Leander Tentrup, Cameron Rasmussen, and Sanjit A
Seshia. Understanding and extending incremental determinization for
2QBF. In Proc. of CAV, 2018.

[SAC+20] Ilaria Scarabottolo, Giovanni Ansaloni, George A Constantinides,
Laura Pozzi, and Sherief Reda. Approximate logic synthesis: A survey.
Proceedings of the IEEE, 2020.

[SGF13] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. Template-
based program verification and program synthesis. Proc. of STTT,
2013.

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached,
and lazy CNF-XOR solving and its applications to counting and sam-
pling. In Proc. of CAV, 2020.

[SGRM18] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S Meel.
Knowledge compilation meets uniform sampling. In Proc. of LPAR,
2018.

[Sìc̆20] Juraj Sìc̆. Satisfiability of DQBF using binary decision diagrams. Mas-
ter’s thesis, Masaryk University, 2020. Available at https://is.muni.
cz/th/prexv/.

142

[skl] sklearn.tree.decisiontreeclassifier. Available at https://
scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html.

[Sli20] Friedrich Slivovsky. Interpolation-based semantic gate extraction and
its applications to QBF preprocessing. In Proc. of CAV, 2020.

[SM19] Mate Soos and Kuldeep S Meel. Bird: Engineering an efficient CNF-
XOR sat solver and its applications to approximate model counting.
In Proc. of the AAAI, 2019.

[Soo19] Mate Soos. msoos/cryptominisat, 2019. Available at https://github.
com/msoos/cryptominisat.

[SRSM19] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
Ganak: A scalable probabilistic exact model counter. In Proc. IJCAI,
2019.

[SS10] Marko Samer and Stefan Szeider. Algorithms for propositional model
counting. Journal of Discrete Algorithms, 2010.

[syg19] SyGuS: syntax-guided synthesis competition, 2019. Available at https:
//sygus.org/comp/2019/.

[TR19] Leander Tentrup and Markus N Rabe. Clausal abstraction for DQBF.
In Proc. of SAT, 2019.

[TV17] Lucas M Tabajara and Moshe Y Vardi. Factored boolean functional
synthesis. In Proc. of FMCAD, 2017.

[URD+13] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela
Mador-Haim, Milo MK Martin, and Rajeev Alur. TRANSIT: speci-
fying protocols with concolic snippets. ACM SIGPLAN Notices, 2013.

[VR17] Sahil Verma and Subhajit Roy. Synergistic debug-repair of heap ma-
nipulations. In Proc. of ESEC/FSE, 2017.

[WRMB17] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. Hqspre–
an effective preprocessor for QBF and DQBF. In Proc. of TACAS,
2017.

[WWSB16] Karina Wimmer, Ralf Wimmer, Christoph Scholl, and Bernd Becker.
Skolem functions for QBF. In Proc. of ATVA, 2016.

[XHHLB08] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Satzilla: portfolio-based algorithm selection for SAT. Proc. of JAIR,
2008.

[XMK15] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate com-
puting: A survey. IEEE Design & Test, 2015.

[ZS13] Sai Zhang and Yuyin Sun. Automatically synthesizing SQL queries
from input-output examples. In Proc. of ASE, 2013.

