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What’s It All About

Wish I had a system
that could work like

this ...

X1, X2 Y

Spec by examples
X1 X2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Spec by input-output relation
(Y≥ X1)∧ (Y≥ X2)∧ (Y≥ 10)∧(
(Y≤ X1)∨ (Y≤ X2)∨ (Y≤ 10)

)

Spec in natural language
Output Y as max of X1 and X2, but if both are less

than 10, then output Y as 10
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What’s It All About

Wish I had an algorithm
that could help me ...

X1, X2 Y

Spec by examples
X1 X2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Spec by input-output relation
(Y≥ X1)∧ (Y≥ X2)∧ (Y≥ 10)∧(
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)

Spec in natural language
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than 10, then output Y as 10

Synthesis Algorithm
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Focus of this tutorial

Wish I had an algorithm
that could help me ...

X1, X2 Y

Spec by examples
X1 X2 Y

20 3 20
2 9 10
5 30 30
...

...
...

Spec by input-output relation
(Y≥ X1)∧ (Y≥ X2)∧ (Y≥ 0)∧(
(Y≤ X1)∨ (Y≤ X2)∨ (Y≤ 0)

)

Spec in natural language
Output Y as max of X1 and X2, but if both are less

than 10, then output Y as 10

Synthesis Algorithm
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Automated Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym)

– xi input variables (vector X)
– yj output variables (vector Y)
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Automated Synthesis: A Generic View

xn

x1
y1

ym

System
(Program or circuit

to be designed)

ϕ(x1, . . .xn,y1, . . .ym)

Specification as a formula

• Goal: Automatically synthesize system s.t. it satisfies ϕ(x1, ..,xn,y1, ..,ym) whenever
possible.

– xi input variables (vector X)
– yj output variables (vector Y)

• Need Y as functions F of
– “History” of X and Y, “State” of system, ... in general

such that ϕ(X,F) is satisfied.
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Automated Synthesis: Concrete View 1 (Memoryless Arbiter)

x2

x1
y1

y2

System
(program or circuit

to be designed)

(y1⇒ x1)∧ (y2⇒ x2)∧ (¬y1∨¬y2)

Specification as formula

• Specification gives a relation between inputs & outputs

• Doesn’t tell us how to obtain y1,y2 as functions of x1,x2

• Need to synthesize y1,y2 as functions of x1,x2 s.t. spec is satisfied
• Multiple solutions

– y1 = x1∧¬x2, y2 = x2

– y1 = x1, y2 = x2∧¬x1

– Admits “unfair” implementation

• Suffices to give one “good enough” solution
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Automated Synthesis: Concrete View 2 (Cryptanalysis)

X

Y1

Y2

System
(program or circuit

to be designed)

(X = Y1×[n] Y2)∧¬(Y1 = 1[n])∧¬(Y2 = 1[n])

Specification as bit-vector formula

• Synthesize Y1,Y2 as functions of X

– Y1,Y2 must be non-trivial factors of X
– Not always satisfiable (if X is prime)
– Efficient solution would break crypto systems
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Reactive vs Functional Synthesis

Reactive synthesis
• System & environment in continuous temporal interaction
• Specification talks of infinite sequence of inputs & outputs

– Temporal logic, automata over infinite words, ...

• Examples: Operating system, network switch, nuclear plant controller, ...

• Not focus of this tutorial

Functional synthesis
• System generates outputs in response to current inputs

• No dependence on past history
• Specification talks of current input and current output

– Propositional/bit-vector/... logics suffice, no temporal operators

• Examples: program synthesis, arithmetic/numerical computation, next-state logic of
reactive controllers, ...

• Focus of this tutorial
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Outline

First half: The basics
1 Formal Problem Statement
2 Application domains
3 Theoretical hardness and practical algorithms

A coffee/tea/dinner/drinks break

Second half: Under the hood
4 Deep Dives

1 Knowledge compilation
2 Counter-example guided
3 Data-driven approaches

5 Tool demos and experimental results
6 Conclusion and the way forward
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Boolean Functional Synthesis

Formal definition

Given Boolean relation ϕ(x1, ..,xn,y1, ..,ym)

• x1 input variables (vector X)

• yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . .ym ϕ(X,y1 . . .yym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

• What if ∀X∃Y ϕ(X,Y) = 0?
– Interesting as long as ∃X∃Y ϕ(X,Y) = 1
– F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

▶ F(X) inconsequential for other X

– Given X, F(X), easy to check if ∃Y ϕ(X,Y) = ϕ(X,F(X)) = 0
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A short tool demo

∀X∃Y ϕ(X ,Y )

In a specific format

Synthesizer Skolem function
simulator
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1 Formal Problem Statement

2 Application Domains

3 Theoretical Hardness and Practical Algorithms

4 Deep Dives

5 Tool Demos and Experimental Results

6 Conclusion and the Way Forward
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Application Domain 1: Program Synthesis

Given a specification ϕ, automatically synthesize a program P such that ϕ ⊨ P .

Specifications
• Logical specifications

• Test cases (examples)

• Natural Language

• Demonstrations/Traces

• Programs
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Application Domain 1: Syntax-Guided Synthesis (SyGuS) formalization*

SyGuS was an attempt to formalize the core synthesis problem as a:

• a background theory (eg. QF UFLIA)

• a semantic correctness specification (in the background theory)

• a language to represent the synthesized program (as a context-free grammar)

*Alur et al.,FMCAD’13
15



Application Domain 1: Developer Assistance: Heap Manipulations*

Reverse a singly linked list.

*Roy, SAS’13; Garg and Roy, SAS’15; Verma and Roy, ESEC/FSE’17; Verma and Roy, FMSD’22
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Application Domain 1: Developer Assistance: Heap Manipulations*

Reverse a singly linked list.

0 tmp1 = x
1 tmp2 = tmp1.next
while(not (tmp2 == null))

2 tmp0 = tmp2.next
3 tmp2.next = x
4 x = tmp2
5 tmp2 = tmp0
6 tmp1.next = tmp0

*Roy, SAS’13; Garg and Roy, SAS’15; Verma and Roy, ESEC/FSE’17; Verma and Roy, FMSD’22
16



Application Domain 1: Synthesis for Data Scientists

• Data preparation: synthesize R scripts for complex data wrangling tasks*

• Data extraction: synthesize SQL queries† and Python scripts‡ from examples of input and
output tables

• Data visualization: automatically synthesize visualizations from data with small
example(s) as input §

• ML pipelines: allows for generating supervised learning pipelines¶

*Feng et al., PLDI’17
†Wang et al., PLDI’17; https://scythe.cs.washington.edu/
‡Bavishi et al., OOPSLA’19
§Wang et al., POPL’20
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Application Domain 1: End-User Programming

Flash Fill (Microsoft Excel)*

• automatically identifies patterns,
and

• synthesizes a program in the
background

Similar line of tools for semantic string, number and table transformations.†

*Gulwani et al., POPL’11; image and video at https://support.microsoft.com
†Singh and Gulwani, PVLDB’12; Singh and Gulwani, CAV’12; Harris and Gulwani, PLDI’11
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Application Domain 1: Intelligent Tutoring

• Problem Generation: for geometry, natural deduction and arithmetic*

• Solution Generation: geometry constructions†

MidPoint(Line(p1,p2))

c1 = Circle(p1, len(Line(p1,p2)))
c2 = Circle(p2, len(Line(p1,p2)))
q1,q2 = CircleCircleXn(c1,c2)
r = LineLineXn(Line(p1,p2),Line(q1,q2))
return r
(simplified for presentation)

• Feedback Generation: introductory programming and automata‡

*Alvinet al., AAAI’14; Ahmedet al., IJCAI’13; Andersen et al.,CHI’13
†Gulwani et al., PLDI’11
‡Singh et al., PLDI’13; Alur et al., IJCAI’13, Gulwani, GECCO’14
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Application Domain 1: Algorithms for Program Synthesis*

CEGIS (Symbolic)

SyPR: Proof-Guided Repairs

CEGIS (Enumerative)

Reduction to QBF

*CEGIS(Sym): Solar-Lezama, STTT’12. CEGIS(Enum): Alur et al., FMCAD’13; Alur et al., TACAS’17; SyPR: Verma and Roy, ESEC/FSE’17; Verma et al., CGO’20; Golia et
al., CAV’20; RedQBF: Golia et al., IJCAI’21
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Application Domain 1: Program synthesis to Skolem Functional Synthesis*

f (x1,x2)≥ x1 and
f (x1,x2)≥ x2 and
(f (x1,x2) == x1 or
f (x1,x2) == x2)

y ≥ x1 and
y ≥ x2 and
(y == x1 or
y == x2)

• Synthesize function f that
satisfies the specification.

• Replace every call of functions f
by a new variable y in the
specification.

∀x1,x2 ∃y ϕ(x1,x2,y)

The synthesized skolem function is an implementation of the function f (x1,x2).

*Golia et al., IJCAI’21
21
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Application Domain 2: Games and planning

Conway’s Game of Life

• Infinite 2D grid of cells, each alive or dead in each gen:
1 (Under-pop) live cell with < 2 live neighbors dies;
2 (Status-quo) live cell with 2 or 3 live neighbors lives;
3 (Over-pop) live cell > 3 live neighbors dies;
4 (Re-birth) dead cell with 3 live neighbors comes alive

• Objective: Is there a Garden of Eden (GoE), a configuration with no predecessor?
– If it does not exist, give a witnessing function that defines the predecessor!
– A storied history! From 1971 onwards... https://conwaylife.com/wiki/Garden_of_Eden

Encoded as Skolem function existence and synthesis problem

• Let X be current position, Y be previous position and T (X,Y) be transition function

• Then GoE does not exist iff ∀X∃Y T (X,Y) is satisfiable!

• A witness that GoE does not exist is a Skolem function for Y.

22
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Application Domain 2: Games and planning as QBF

• ∀X∃Y T (X,Y) has two alternating blocks of quantifiers: 2-QBF. In general, can have many!

Quantified Boolean Formula (QBF) or QSAT: Essentially SAT + chunks of quantifiers

∀X1∃Y1∀X2∃Y2 . . .∀Xk∃Yk ϕ

where ϕ is a Quantifier-free Boolean Formula,
Xi ,Yi are sequences of variables.
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where ϕ is a Quantifier-free Boolean Formula,
Xi ,Yi are sequences of variables.
• A rich theoretical history.

– Textbook PSPACE-complete problem.
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where ϕ is a Quantifier-free Boolean Formula,
Xi ,Yi are sequences of variables.

• A rich theoretical history.

• Huge advances in tools! https://www.qbflib.org

Luca Pulina, Martina Seidl: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17). Artif. Intell. 274: 224-248 (2019)
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where ϕ is a Quantifier-free Boolean Formula,
Xi ,Yi are sequences of variables.

• A rich theoretical history.

• Huge advances in tools! https://www.qbflib.org Smallest GoE: found by QBFsolver(2011)

Christiaan Hartman, Marijn Heule, Kees Kwekkeboom, Alain Noels: Symmetry in Gardens of Eden. Electron. J. Comb. 20(3): P16 (2013)
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• Any 2-player game can be coded as QBF
– Skolem functions are winning strategies

of Player 2 (∃-player)!

Ankit Shukla, Armin Biere, Luca Pulina, Martina Seidl: A Survey on Applications of Quantified Boolean Formulas. ICTAI 2019: 78-84
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• Huge advances in tools! https://www.qbflib.org

• Any 2-player game can be coded as QBF
– Skolem functions are winning strategies

of Player 2 (∃-player)!

Is it the case that for every first move of P1
there exists a first move of P2, s.t for every
second move of P1 there exists a second
move of P2... s.t. P2 can win!?

Ankit Shukla, Armin Biere, Luca Pulina, Martina Seidl: A Survey on Applications of Quantified Boolean Formulas. ICTAI 2019: 78-84
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• Any 2-player game can be coded as QBF
– Skolem functions are winning strategies

of Player 2 (∃-player)!

• Many applications of QBF that we dont
have time to go into!

Ankit Shukla, Armin Biere, Luca Pulina, Martina Seidl: A Survey on Applications of Quantified Boolean Formulas. ICTAI 2019: 78-84
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Application Domain 2: Games and planning with QBF and Skolem fns

Conformant or Conditional Planning in AI
Rintanen, J. 1999. Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence Research 10:323-352.

• Given set S of states, I,G, formulas over S defining initial and goal states and a set of
non-det actions A,

– does there exist a plan (seq of actions), s.t., for all possible contingencies (initial states and
nondet choices), there exist an execution (seq of states) that reaches the goal state.

– This is a ∃∀∃ formula, so in 3-QBF.
– Can also be encoded as ∀∃. Rintanen, J. 2007. Asymptotically Optimal Encodings of Conformant Planning in QBF. AAAI 2007: 1045-1050

More Planning to QBF approaches:

• Used to reduce size of encoding rather than uncertainty; Arbitrary Quantifier Alternation.

Michael Cashmore, Maria Fox, Enrico Giunchiglia: Partially Grounded Planning as Quantified Boolean Formula. ICAPS 2013

Michael Cashmore, Maria Fox, Enrico Giunchiglia: Planning as Quantified Boolean Formula. ECAI 2012: 217-222.

Bottomline

Synthesizing Skolem functions synthesizes the plans in all these cases!
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Application Domain 3: Reactive Synthesis
Boolean functional synthesis can help reactive synthesis too!

x2

x1
y1

y2

System
(Arbiter to be designed)

G(x1⇒ Fy1)∧G(x2⇒ Fy2)∧G(¬y1∨¬y2)

Linear Temporal Logic (LTL) spec

• Specification has temporal operators
• G: at all times; F: now or in future
• At all times

– If a request comes on xi , a grant goes on yi then or later.
– Both grants y1 and y2 can’t be asserted

• Relates infinite sequence of X and Y values

y1 : 0
y2 : 0
x1 : 0
x2 : 0

y1 : 0
y2 : 0
x1 : 1
x2 : 0

y1 : 1
y2 : 0
x1 : 0
x2 : 0

y1 : 1
y2 : 0
x1 : 0
x2 : 1

y1 : 0
y2 : 1
x1 : 0
x2 : 0

y1 : 0
y2 : 1
x1 : 0
x2 : 1

· · ·
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Application Domain 3: Reactive synthesis

x2

x1
y1

y2

System
(Arbiter to be designed)

G(x1⇒ Fy1)∧G(x2⇒ Fy2)∧G(¬y1∨¬y2)

Linear Temporal Logic (LTL) spec

• 2-player game between system and environment
– System wins if Y can be generated to satisfy spec

• Strategy for generating Y
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Application Domain 3: Reactive Synthesis
Basic Steps in Synthesis from LTL

LTL specification ϕ

Non-deterministic Büchi automaton

Deterministic Parity Game

Extracting a winning strategy

Constructing next-state and out-
put circuit of Mealy Machine

Boolean
Functional
Synthesis
Application
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Application Domain 3: Winning strategy in reactive synthesis

Winning Region

• Winning region in state transition graph

– Can always satisfy spec from
these states

• Synthesize winning strategy to stay
within winning region

– Given a state, if there exists red transition
to winning region, choose that

– ∀ state ∃ Y WinRgn(NxtSt(state, Y)) = 1

▶ No temporal operators

– Not always satisfiable

28



Application Domain 3: Winning strategy in reactive synthesis

Winning Region

• Winning region in state transition graph

– Can always satisfy spec from
these states

• Synthesize winning strategy to stay
within winning region

– Given a state, if there exists red transition
to winning region, choose that

– ∀ state ∃ Y WinRgn(NxtSt(state, Y)) = 1

▶ No temporal operators

– Not always satisfiable

28



Application Domain 3: Winning strategy in reactive synthesis

Winning Region

• Winning region in state transition graph

– Can always satisfy spec from
these states

• Synthesize winning strategy to stay
within winning region

– Given a state, if there exists red transition
to winning region, choose that

– ∀ state ∃ Y WinRgn(NxtSt(state, Y)) = 1

▶ No temporal operators

– Not always satisfiable

28



Application Domain 3: Winning strategy in reactive synthesis

Winning Region

• Winning region in state transition graph

– Can always satisfy spec from
these states

• Synthesize winning strategy to stay
within winning region

– Given a state, if there exists red transition
to winning region, choose that

– ∀ state ∃ Y WinRgn(NxtSt(state, Y)) = 1

▶ No temporal operators

– Not always satisfiable

28



Application Domain 3: Winning strategy in reactive synthesis

Winning Region

• Winning region in state transition graph

– Can always satisfy spec from
these states

• Synthesize winning strategy to stay
within winning region

– Given a state, if there exists red transition
to winning region, choose that

– ∀ state ∃ Y WinRgn(NxtSt(state, Y)) = 1

▶ No temporal operators

– Not always satisfiable

28



Application Domain 4: Circuit Repair

• Given: An incomplete implementation and specification.

• Objective: Complete the implementation s.t. it is functionally equivalent to specification.
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Application Domain 4: Circuit Repair

• Inputs x1,x2, Outputs y1,y2.

• Synthesise functions(circuits) for
y1,y2 such that it satisfy the given
specification.

∀x1,x2∃y1y2¬(((y1∨ y2)∨ (x1∧¬x2))⊕ (x1⊕ x2))
Image is taken(modified) from Equivalence Checking of Partial Designs Using Dependency Quantified Boolean Formulae, Gitina et al ’13

Engineering change order for combinational and sequential design rectification, Jiang et. al’20
Synthesis and optimization of multiple portions of circuits for ECO based on set-covering and QBF formulations, Fujita et al’20
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Outline

1 Formal Problem Statement

2 Application Domains

3 Theoretical Hardness and Practical Algorithms

4 Deep Dives

5 Tool Demos and Experimental Results

6 Conclusion and the Way Forward
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How Hard is Boolean Skolem Function Synthesis?

Representation: Specification & Skolem functions as Boolean circuits in NNF.

Time complexity

Boolean function synthesis is NP-hard (not surprising!)

Space complexity [ACGKS’18]

• Unless ΠP
2 =ΣP

2 (i.e., the Polynomial Hierarchy collapses to 2nd level), there exist ϕ(X,Y)
for which Skolem function sizes are super-polynomial in |ϕ|.
• Unless non-uniform exponential-time hypothesis fails, there exist ϕ(X,Y) for which Skolem

function sizes are exponential in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely
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A Survey of Existing Techniques

0. Closely related to most general Boolean unifiers
Boole’1847, Lowenheim’1908, Macii’98

1. Extract Skolem functions from proof of validity of ∀X∃Yϕ(X,Y)
Bendetti’05, Jussilla et al.’07, Balabanov et al.’12, Heule et al.’14

– Efficient if a short proof of validity is found.
– Does not work if ∀X∃Yϕ(X,Y) is not valid !

2. Using templates
Solar-Lezama et al.’06, Srivastava et al.’13

– Effective when small set of candidate Skolem functions known.

3. Self-substitution + function composition
Jiang’09, Trivedi’03

– Craig Interpolation-based approach.
– Does not scale well with an increase in Y variables.
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Existing Approaches (Cont.)

4. Incremental determinization
Rabe et al.’17,’18

– Incrementally adds new constraints to the formula to generate a unique Skolem function.

5. Quantifier instantiation techniques in SMT solvers
Barrett et al.’15, Bierre et al.’17

– Works even for bit-vector and other theories.

6. Input/output component separation
Chakraborty et al.’18

– View specification as made of input and output components.
– Alternate analysis of each component to generate decision lists.

7. Synthesis from and as ROBDDs
– Kukula et al.’00, Kuncak et al.’10, Fried et al.’16, Tabajara et al.’17
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Existing Approaches (Cont.)

8. Synthesis from special normal forms: The power of Knowledge Compilation!
– Synthesis negation normal forms (SynNNF)

Akshay et al.’19
– The ultimate normal form Shah et al.’21

9. Counter-example guided Skolem function generation
– Start with over-approximation of Skolem functions + refine

John et al.’15, Akshay et al.’17,’18,’20

10. Data-driven Skolem function synthesis
– Machine-learn Skolem function + MaxSat-based iterative repair

Golia et al.’20, ’21

The last two fall into paradigm of Get Skolem function candidate + check + repair

Our focus in the deep-dive: The last three approaches!
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A Guess-Check-Repair Approach

ϕ(X,Y1, . . .Ym)

Generate (“guess”) candidate Skolem functions

F1, . . .Fm

Check if F1, . . .Fm is a correct Skolem function vector Output F1, . . . ,Fm
Yes

Repair candidate Skolem functions

No, counterexampleRepaired F1, . . . ,Fm
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

— Set of all valuations of X.
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

— Can’t set y to 1 to satisfy ϕ: Γ(X) ≜ ¬ϕ(X,y)[y1]

E.g. If ϕ≡ (x1∨y)∧ (x1∨ x2∨¬y), then
Γ(X) = ¬((x1∨1)∧ (x1∨ x2∨0)) = ¬(x1∨ x2) = ¬x1∧¬x2
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

— Can’t set y to 0 to satisfy ϕ: ∆(X) ≜ ¬ϕ(X,y)[y0]

E.g. If ϕ≡ (x1∨y)∧ (x1∨ x2∨¬y), then ∆(X) = ¬((x1∨0)∧ (x1∨ x2∨1)) = ¬x1
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“Guess”-ing candidate Skolem functions (|Y|= 1)
Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

Lemma [Trivedi’03, Jiang’09,Fried et al’16]

Every Skolem function for y in ϕ must

• Evaluate to 1 in (∆ \Γ) and to 0 in (Γ \∆)

• Be an interpolant of (∆ \Γ) and (Γ \∆)
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

— Specific interpolants of (∆ \Γ) & (Γ \∆)

• ¬Γ ≜ ϕ(X,y)[y1]≡ ϕ(X,1)

• ∆ ≜ ¬ϕ(X,y)[y0]≡ ¬ϕ(X,0).
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“Guess”-ing candidate Skolem functions (|Y|= 1)

Find F(X) such that ∃y ϕ(X,y)≡ ϕ(X,F(X))

— Specific interpolants of (∆ \Γ) & (Γ \∆)

• ¬Γ ≜ ϕ(X,y)[y1]≡ ϕ(X,1): Easy solution for 1 output var

• ∆ ≜ ¬ϕ(X,y)[y0]≡ ¬ϕ(X,0).
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“Guess”-ing Game: (|Y| ≥ 2)

Suppose relational spec is ϕ(X,y1, Y2..m )

• Skolem function for Y2..m depends on that for y1 in general
• For what values of X can we not set y1 to 1 (or 0)?

– Γy1(X) = ¬∃ Y2..m ϕ(X,1, Y2..m )

– ∆y1(X) = ¬∃ Y2..m ϕ(X,0, Y2..m )

• From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1

• To find Skolem function for y2, consider
– “Simplified” spec ϕ1(X,y2, Y3..m ) = ϕ(X, F1(X) ,y2, Y3..m )
– Repeat above steps ...

Are we done?
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– Use easily computed approx of ∃ Y2..m ϕ(X,y1, Y2..m )?

– “Guess” G1(X) as approx of Skolem function F1(X)?

– Repair “guess” if needed
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General Idea
Linearly order outputs: y1 ≺ y2 ≺ ·· · ≺ ym

Express
• ym as Gm(X,x1, . . .xm−1) from spec ϕ(X,x1, . . .xm−1,ym)
• ym−1 as Gm−1(X,x1, . . .xm−2) from ∃ym ϕ(X,x1, . . .xm−2,ym−1,ym)

•
...

• y1 as G1(X) from ∃y2 . . .∃ym ϕ(X,y1,y2 . . .ym)

Key Steps
• Generate Skolem functions for 1-output spec

• Compute (approximations of) ∃yi . . .ym ϕ(X,Y)

If all guesses correct, a |X|-input, |Y|-output circuit computing the desired Skolem function vector
(F1, . . .Fm) can be constructed with

• #gates ≤ ∑
m
i=1 #gates(Gi ) +2m

• #wires ≤ ∑
m
i=1 #wires(Gi ) +

m(m−1)
2

Sufficient to compute the Gi functions
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Dealing with Existential Quantification

• Compute ∃yi . . .∃ymϕ(X,x1, . . .xi−2,yi−1,yi , . . .ym)

– Hard in general
– Can we use some efficiently computable approximations?

Represent ϕ(x1, ..,xn,y1, ..,ym) as NNF DAG

• Boolean circuit, ∧ and ∨ internal nodes, ¬ at leaves

ϕ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

¬y1 ∨

x2 ¬x1
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Illustrating Approximations

Replace ¬yi at leaves with fresh variables yi and call the “new” formula ϕ̂.

ϕ̂ : ∨

∨

y1 = 0 ∧

y2 = 0 ¬x1

∧

y1 = 0 ∨

x2 ¬x1

⇒∃y1y2ϕ⇒

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 = 1 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

• ϕ̂(x1...xn,

i︷︸︸︷
0..0 ,yi+1...ym,

i︷︸︸︷
0..0 ,¬yi+1...¬ym)⇒∃y1...yi ϕ(...)

• ϕ̂(x1...xn,

i︷︸︸︷
1..1 ,yi+1...ym,

i︷︸︸︷
1..1 ,¬yi+1...¬ym)⇐∃y1...yi ϕ(...)
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Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS’15]

• Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′)∧∧m

j=1(Yj ⇔ Fj)∧¬ϕ(X,Y)
)

• ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector
• Suppose σ: satisfying assignment of ε

– ϕ(σ[X],σ[Y′)] = 1, σ[Y] = F(σ[X]), ϕ(σ[X],σ[Y]) = 0
– σ is counterexample to the claim that F1, . . .Fm is a correct Skolem function vector
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Counterexample Generalization
Recall: Skolem functions guessed from approximations of
∃yi+1 . . .∃ym ϕ(X,x1, . . .xi−1,yi ,yi+1, . . .ym)

• Let ∃yi+1 . . .∃ym ϕ(X,Y)⇒ Θi(X,x1, . . .xi−1,yi)

• Let δi = ¬Θi |yi=0; γi = ¬Θi |yi=1
• Initial guess Gi(X,x1, . . .xi−1) ∈ {δi ,¬γi} ... 1-sided error

– Gi = δi cannot err if it evaluates to 1
– Gi = ¬γi cannot err if it evaluates to 0

Generalized counterexample

Given σ |= ε(X,Y,Y′) and δi ,γi for 1≤ i ≤m
Find function µ(X,x1, . . .xj−1) for some j ∈ {1, . . .m} s.t.

• σ |= µ ... µ generalizes σ

• µ⇒ γj ∧δj

– ⇒∀yj . . .∀ym¬ϕ(X,x1, . . .xj−1,yj ,yj+1, . . .ym)
– If π |= µ, no extension of π satisfies ϕ ... counterexample

Must ensure that (X,G1, . . .Gj−1) never evaluates to π
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Repairing “guess”-ed candidate Skolem functions

• Every model of µ(X,x1, . . .xj−1) gives a problematic combination of G1, . . .Gj−1 values

• Flip Gj−1 whenever µ holds
– Recall Gj−1 ∈ {¬γj−1,δj−1}
– Only source of error: under-approximation of ¬∃yj , . . .∃ym ϕ(X,x1, . . .xj−2,yj−1,yj , . . .ym)
– Repair: Expand under-approximation

▶ If Gj−1 is ¬γj−1, γj−1← γj−1∨µ|σ[yj−1]

▶ If Gj−1 is δj−1, δj−1← δj−1∨µ|σ[yj−1]

Counter-example guided repair by expanding δi ’s and γi ’s.

Expansion-based repair

Simple argument for termination – expansions can’t go on forever
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Deep Dive 2: Knowledge compilation for Boolean Functional Synthesis

46



Knowledge Compilation for Synthesis

Our Definition
... a family of approaches for addressing the intractability of synthesis problems. A propositional
model is compiled in an off-line phase in order to support some queries in polytime.

Compilerϕ

CNF
Circuit...

ϕ̂

Magic Normal Form

Polytime Engine

Skolem functions
Inputs X

Outputs Y
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Recall from the previous Deep-Dive

For solving the Skolem function synthesis problem, it suffices to

1. Generate Skolem functions for only 1-output specs

2. For multiple output case, if we can compute ∃yi . . .ym ϕ(X,Y), then it reduces to multiple
instances of the single output problem!
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Recall from the previous Deep-Dive

For solving the Skolem function synthesis problem, it suffices to

1. Generate Skolem functions for only 1-output specs
– this is easy: ϕ(X,1) and ¬ϕ(X,0) are Skolem functions.

2. For multiple output case, if we can compute ∃yi . . .ym ϕ(X,Y), then it reduces to multiple
instances of the single output problem!

Does there exist a form of the specification where this HARD question is EASY?

48



Towards a normal form for efficient synthesis

• Represent ϕ(x1, ..,xn,y1, ..,ym) NNF DAG
– Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves
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Towards a normal form for efficient synthesis

• Represent ϕ(x1, ..,xn,y1, ..,ym) NNF DAG
– Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves

ϕ : ∨

∨

y1 ∧

y2 ¬x1

∧

y1 ∨

x2 ¬x1

Positive form of specification: ϕ̂({x1, . . .xn}, {y1, . . . ,ym,y1, . . .ym})
• Monotone w.r.t all yi and yi
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Simple properties of the positive form ϕ̂

ϕ̂ : ∨

∨

y1 = 0 ∧

y2 = 0 ¬x1

∧

y1 = 0 ∨

x2 ¬x1

⇒∃y1y2ϕ⇒

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 = 1 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

• ϕ̂(x1...xn,

i︷︸︸︷
0..0 ,yi+1...ym,

i︷︸︸︷
0..0 ,¬yi+1...¬ym)⇒∃y1...yi ϕ(...)

• ϕ̂(x1...xn,

i︷︸︸︷
1..1 ,yi+1...ym,

i︷︸︸︷
1..1 ,¬yi+1...¬ym)⇐∃y1...yi ϕ(...)
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The positive form and existential quantification

Let us take the first output: ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1

When does the reverse implication hold?

• Let’s ask the opposite. When do we have ∃y1ϕ(X,Y) ̸⇐ ϕ̂ |y1=1,y1=1 ?
• Exactly when

– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

▶ ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
▶ ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
▶ (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• In other words, when ϕ̂ “behaves like” y1∧ y1.

So, what should we avoid?

• There are some values for the other variables s.t., ϕ̂⇔ y1∧ y1.

• If we can avoid it, we get ∃y1ϕ(X,Y) ⇔ ϕ̂ |y1=1,y1=1
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• Exactly when

– ϕ̂1 |y1=1,y1=1 = 1
– ∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

▶ ϕ |y1=1 ⇔ ϕ̂ |y1=1,y1=0 = 0
▶ ϕ |y1=0 ⇔ ϕ̂ |y1=0,y1=1 = 0
▶ (By monotonicity of ϕ̂ w.r.t y1 and y1) ϕ̂ |y1=0,y1=0 = 0

• In other words, when ϕ̂ “behaves like” y1∧ y1.

So, what should we avoid?

• There are some values for the other variables s.t., ϕ̂⇔ y1∧ y1.

• If we can avoid it, we get ∃y1ϕ(X,Y) ⇔ ϕ̂ |y1=1,y1=1
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The core simple idea: Don’t be an AND gate!

We can now generalize this to more outputs

If we can avoid

• ϕ̂⇔ y1∧ y1 AND ϕ̂ |y1=1,y1=1⇔ y2∧ y2.

Then we get

• ∃y1,y2ϕ(X,Y) ⇔ ϕ̂ |y1=1,y1=1,y2=1,y2=1

and so on...

The question
• We want to ensure the positive form does not “behave” as yi ∧ yi for any i .

• What representation of the specification ϕ ensures this?
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A simple yet special Normal Form
Decomposable Negation Normal Form (DNNF): Forbidden structure

ϕ(X,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸¬y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸¬yk
· · · · · ·︸︷︷︸

yn

· · ·︸︷︷︸¬yn

· · · · · ·︸ ︷︷ ︸
X, ¬X

∧ ∧

∧

Adnan Darwiche: Decomposable negation normal form. J. ACM 48(4): 608-647 (2001)
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A simple yet special Normal Form
Decomposable Negation Normal Form (DNNF): Forbidden structure
DNNF has many other nice properties. Well-studied in the KR community!

ϕ(X,Y)

· · ·︸︷︷︸
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∧ ∧

∧
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Surely, we can do better!

Weak DNNF (wDNNF): Forbidden structure

ϕ(X,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸¬y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸¬yk
· · · · · ·︸︷︷︸

yn

· · ·︸︷︷︸¬yn

· · · · · ·︸ ︷︷ ︸
X, ¬X

∧

S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah: What’s Hard About Boolean Functional Synthesis? CAV (1) 2018: 251-269
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Surely, we can do better!

Weak DNNF (wDNNF): Forbidden structure

ϕ(X,Y)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸¬y1
· · · · · ·︸ ︷︷ ︸
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· · ·︸ ︷︷ ︸¬yk
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X, ¬X

∧
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Exploit the property of the reduct!

Synthesis Negation Normal Form (SynNNF): Forbidden semantics

ϕ̂(X,Y) ̸⇔ (yk ∧ yk)

· · ·︸︷︷︸
y1

· · ·︸︷︷︸
y1
· · · · · ·︸ ︷︷ ︸

yk

· · ·︸ ︷︷ ︸
yk

· · · · · ·︸︷︷︸
yn

· · ·︸︷︷︸¬yn

· · · · · ·︸ ︷︷ ︸
X, ¬X

All 1’s Every possible assignment

S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, S. Shah: Knowledge Compilation for Boolean Functional Synthesis. FMCAD 2019: 161-169
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SynNNF: A negation normal form for efficient synthesis

Skolem fn for yi (in terms of yi+1, . . .ym,X)

• ∃y1, . . .yi−1 ϕ(X,y1, . . .yi−1,1,yi+1, . . .ym)

• Equivalently, ϕ̂ |y1=1,y1=1,...yi−1=1,yi−1=1,yi=1,yi=0, if ϕ in SynNNF

Poly-time/sized Skolem functions!

Observations:
• Not purely structural restriction on representation of ϕ

• Reminiscent of Deterministic DNNF (dDNNF)
– For every ∨ node representing ϕ1∨ϕ2, require ϕ1∧ϕ2 =⊥.
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Comparing the Normal Forms

• Every wDNNF, DNNF circuit is also in SynNNF.

• Every FBDD, ROBDD can be compiled in linear time to SynNNF.

SynNNF is strictly weaker/more succinct than wDNNF, DNNF, FBDD, ROBDD

Punchline!

SynNNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially
more succinct than ROBDDs/FBDD.
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What more can we do?

Can we get necessary & sufficient condition?

Characterizing poly-time and poly-size BFnS

Does there exist a ”semantically universal” class C ⋆ of ckts s.t.:

P1 : BFnS is poly-time for C ⋆

P2 : For every class C of ckts:
1. BFnS is poly-time for C iff C compiles to C ⋆ in poly-time.
2. BFnS is poly-size for C iff C compiles to poly-size ckts in C ⋆

Surprise!

Yes, there exists such a class! Subset-And-Unrealizable Normal Form (SAUNF)

P. Shah, A. Bansal, S. Akshay, S. Chakraborty: A Normal Form Characterization for Efficient Boolean Skolem Function Synthesis. LICS 2021: 1-13
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SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF

ϕ(X,Y) ̸⇔ (yk ∧ yk)

Linearly ordered partition of

Y/¬Y-labeled leaves

· · ·︸︷︷︸
yk

· · ·︸︷︷︸
yt

· · ·︸︷︷︸¬yk

· · ·︸︷︷︸¬yt
· · · · · ·︸︷︷︸

yk

· · ·︸︷︷︸¬ys
· · · · · ·︸︷︷︸

yk
· · · · · ·︸︷︷︸¬yk

· · · · · · · · ·︸ ︷︷ ︸
X, ¬X

All 1’s

All 0’s
Every assignment
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ϕ(X,Y) ̸⇔ (yk ∧ yk)

Linearly ordered partition of

Y/¬Y-labeled leaves

· · ·︸︷︷︸
yk

· · ·︸︷︷︸
yt

· · ·︸︷︷︸
yk

· · ·︸︷︷︸
yt
· · · · · ·︸︷︷︸

yk

· · ·︸︷︷︸¬ys
· · · · · ·︸︷︷︸

yk
· · · · · ·︸︷︷︸

yk
· · · · · · · · ·︸ ︷︷ ︸

X, ¬X

All 1’s

All 0’s
Every assignment
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More properties and structure

Checking if a given specification is in SynNNF/SAUNF
• Is Co-NP complete, given linearly ordered variables/partition of Y-labeled leaves

• Is Co-NP hard and in ΣP
2 , otherwise.

Compiling from CNF to SynNNF/SAUNF
• Algorithms and Prototype implementations exist. (e.g., C2Syn)
• Worst-case exponential-time and space

– Unavoidable due to hardness results

Algorithms for compositions and operations

Given ϕ1(X,Y) and ϕ2(X,Y) in SynNNF/SAUNF

• Computing ϕ1∨ϕ2 in SynNNF/SAUNF takes constant time.

• Computing ϕ1∧ϕ2 can take super-polynomial time.

• Existential quantification is easy.
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End of this deep dive

Some takeaways
• Nice normal forms exist for Boolean Functional Synthesis!

• Knowledge representations and compilation is key.

• Explains performance of existing tools on some benchmarks.

• More in concluding remarks...
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Another Flavour of Guess-Check-Repair

A data-driven approach for Skolem function synthesis
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Data Generation
Standing on the Shoulders of Constrained Samplers

ϕ(x1,x2,y1,y2)

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
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Learn Candidate Functions
Taming the Curse of Abstractions via Learning with Errors

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1 := (¬x1∧¬y1),
p2 := (x1∧ y1)
f1 = if p1 then 1

elif p2 then 1

else 0
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Repair of Approximations
Reaping the Fruits of Formal Methods Revolution

E(X ,Y ,F)

Gσ(X ,Y )

Repair Candidates

Return F

SAT, σ UNSAT

UNSAT Core Repair Cycle
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Data Generation

Potential Strategy: Randomly sample satisfying assignment of ϕ(X ,Y ).

Challenge: Multiple valuations of y1,y2 for same valuation of x1,x2.

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0
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Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Uniform Sampler

• Possible Skolem functions:
– f1(x1,x2) = ¬(x1∨ x2)

f1(x1,x2) = ¬x1 f1(x1,x2) = ¬x2 f1(x1,x2) = 1

– f2(x1,x2) = ¬(x1∧ x2)

f2(x1,x2) = ¬x1 f2(x1,x2) = ¬x2 f2(x1,x2) = 0

69



Data Generation
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Data Generation

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

x1 x2 y1 y2

0 0 1 0/1
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 0

x1 x2 y1 y2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Magical Sampler

• Possible Skolem functions:
– f1(x1,x2) = ¬(x1∨ x2) f1(x1,x2) = ¬x1 f1(x1,x2) = ¬x2 f1(x1,x2) = 1
– f2(x1,x2) = ¬(x1∧ x2) f2(x1,x2) = ¬x1 f2(x1,x2) = ¬x2 f2(x1,x2) = 0
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Weighted Sampling to Rescue

• W : X ∪Y 7→ [0,1]

• The probability of generation of an assignment is proportional to its weight.

W (σ) = ∏
σ(zi)=1

W (zi) ∏
σ(zi)=0

(1−W (zi))

• Example: W (x1) = 0.5 W (x2) = 0.5 W (y1) = 0.9 W (y2) = 0.1
σ1 = {x1 7→ 1,x2 7→ 0,y1 7→ 0,y2 7→ 1}

W (σ1) = 0.5× (1−0.5)× (1−0.9)×0.1 = 0.0025

• Uniform sampling is a special case where all variables are assigned weight of 0.5.
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Data Generation

Generate Samples with
W (xi) = 0.5
W (yi) = 0.9

Generate Samples with
W (xi) = 0.5
W (yi) = 0.1

Compute Weights qi

Generate Samples with
W (xi) = 0.5
W (yi) = qi
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Different Sampling Strategies

• Knowledge representation based
techniques

(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)

• Hashing based techniques
(Chakraborty, Meel, and Vardi 2013,
2014,2015)
(Soos, Meel, and Gocht 2020)

• Mutation based techniques
(Dutra, Laeufer, Bachrach, Sen,
2018)

• Markov Chain Monte Carlo based
techniques

(Wei and Selman,2005)
( Kitchen,2010)

• Constraint solver based techniques
(Ermon, Gomes, Sabharwal,
Selman,2012)

• Belief networks based techniques
(Dechter, Kask, Bin, Emek,2002)
( Gogate and Dechter,2006)
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Learn Candidate Function: Decision Tree Classifier

ϕ(x1,x2,y1,y2) : (x1∨ x2∨ y1)∧ (¬x1∨¬x2∨¬y2)

• To learn y2

– Feature set: valuation of x1,x2,y1

– Label: valuation of y2

– Learn decision tree to represent y2 in
terms of x1,x2,y1

• To learn y1

– Feature set: valuation of x1,x2

– Label: valuation of y1

– Learn decision tree to represent y1 in
terms of x1,x2

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
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Learning Candidate Functions

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

p1

p21

1 0

1 0

1 0
Can reorder p1,p2

Learning one level decision list
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What Kind of Learning

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

p1 := (¬x1∧¬x2),
p2 := (x1∧¬x2)
f1 = if p1 then 1

elif p2 then 1

else 0

Learning without Error
Every row is a solution of ϕ(X ,Y )

Learning with Errors
The data is only a subset of solutions.

Learn with Errors: Approximations not Abstractions
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Abstraction vs Approximation

fi(X) = 1

yi = 1

yi → fi(X)

yi = 1

fi(X) = 1

fi(X)→ yi

yi = 1

fi(X) = 1

Approximation

yi = 1, fi(X) = 0

yi = 0, fi(X) = 1Abstraction
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Verification of Candidate Functions

E(X ,Y ,Y ′) := ϕ(X ,Y )∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

(JSCTA’15)
• If E(X ,Y ,Y ′) is UNSAT: ∃Y ϕ(X ,Y )≡ ϕ(X ,F(X))

– Return F

• If E(X ,Y ,Y ′) is SAT: ∃Y ϕ(X ,Y ) ̸≡ ϕ(X ,F(X))

– Let σ |= E(X ,Y ,Y ′) be a counterexample to fix.
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Repair Candidate Identification

E(X ,Y ,Y ′) := ϕ(X ,Y )∧¬ϕ(X ,Y ′)∧ (Y ′↔ F(X))

σ |= E(X ,Y ,Y ′) be a counterexample to fix.

• Let σ := {x1 7→ 1,x2 7→ 1,y1 7→ 1,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}.

• Potential repair candidates: All yi where σ[yi ] ̸= σ[y ′i ].

• ϕ(X ,Y ) is Boolean Relation.
– So it can be σ̂ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}
– We would not repair f1.

• MaxSAT-based Identification of nice counterexamples:
– Hard Clauses ϕ(X ,Y )∧ (X ↔ σ[X ]).
– Soft Clauses (Y ↔ σ[Y ′]).

• Candidates to repair: Y variables in the violated soft clauses
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Repairing Approximations

• σ = {x1 7→ 1,x2 7→ 1,y1 7→ 0,y2 7→ 1,y ′1 7→ 0,y ′2 7→ 0}, and we want to repair f2.

• Potential Repair: If x1∧ x2∧¬y1︸ ︷︷ ︸
β={x1,x2,¬y1}

then y2 = 1

• Would be nice to have β = {x1,x2} or even β = {x1}

• Challenge: How do we find small β?
– Gσ(X ,Y ) := ϕ(X ,Y )∧ x1∧ x2∧¬y1∧¬y2

– β:= Literals in UNSAT Core of Gσ(X ,Y )
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Repair: Adding Level to Decision List

• Candidates are from one level
decision list:

– Say we have paths p1,p2 with the
leaf node label as 1.

– Learned decision tree: If p1 then 1,
elif p2 then 1, else 0.

– p1, p2 can be reordered.

• Suppose in repair iterations, we have
learned: If β1 then 1, . . . β2 then 0
. . . ...

• β1 and β2 can be reordered.

• From one-level decision list to
two-level decision list.

β1

β2
1

0

p1

p21

1 0

1 0

1 0

01

1 0

Can reorder β1,β2

Can reorder p1,p2
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Manthan

ϕ(X ,Y )
X = {x1,x2}
Y = {y1,y2}

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

Check Satisfiability
of E(X ,Y ,Y ′)

Gσ(X ,Y )

Return F

Data Generation Learn Candidates

Verify Candidates

SAT, σ

UNSATUNSAT Core-based Repair
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Outline

1 Formal Problem Statement

2 Application Domains

3 Theoretical Hardness and Practical Algorithms
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5 Tool Demos and Experimental Results

6 Conclusion and the Way Forward
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Tool Demo: Pipeline

An SMT Formula

∀X∃Y ϕ(X ,Y )

BFSS/Manthan

Circuit Simulator

Skolem Synthesizer

bit-blasting

qdimacs

An SMT formula

Qdimacs formula Synthesized Skolem function
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Summary

• Functional Synthesis is a fundamental problem with wide variety of applications
– program synthesis, games and planning, circuit repair

• Long history of work that has sought to push the scalability envlope
• An exciting and diverse set of approaches

– Knowledge compilation
– Guess, check, and repair

• Promise of scalability: Out of 609 benchmarks

2018 247 solved
2019 280 solved
2020 356 solved
2021 509 solved
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Where do we go from here?

1. Benchmarks

2. Notion of Quality

3. Beyond Single Functions

4. Beyond Propositional Logic
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Future Directions I: Benchmarks

Promise of scalability: Out of 609 benchmarks

2018 SOTA 247 solved

2019 SOTA 280 solved

2020 SOTA 356 solved

2021 SOTA 509 solved

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more
investment in foundational tools, while improvements in the foundational tools drive further
applications. Around and around.
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Future Directions II: Search for Optimal Functions

• The current formulation allows the solver to find an arbitrary functions

• Opportunity to formalize the notion of quality

• Smaller size?

• Uses gates of particular type?
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Future Directions III: Beyond Single Functions

• Enumeration of functions: Knowledge compilation

• Uniform sampling of functions: randomized strategies

• Counting of functions
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Future Directions IV: Beyond Propositional Logic

• Past twenty years: Development of solvers with satisfiability modulo theory solvers
– Capable of handling theories such as string, bitvectors, linear real arithmetic

• Lifting synthesis techniques to SMT
– Knowledge compilation
– Machine Learning techniques for SMT learning
– Repair techniques
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Additional Slides
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Application Domain 2: Games and planning from QBF to 2-QBF/dep-QBF

A Quick Aside
Many questions required solving QBF.

But how do we go from QBF to 2-QBF?
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Application Domain 2: Games and planning from QBF to 2-QBF/dep-QBF

A Quick Aside
Many questions required solving QBF.

But how do we go from QBF to 2-QBF?
Two simple ways
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Application Domain 2: Games and planning from QBF to 2-QBF/dep-QBF

1. QBF to 2-QBF by repeated substitutions of Skolem functions!

1. Remove inner most
quantifier alternation.

2. Substitute Skolem
function.

• E.g., if Ψ= ∀X1∃Y1∀X2∃Y2ϕ, consider 2-QBF formula
Ψ′ = ∀X1∀Y1∀X2∃Y2ϕ

• Synthesize Skolem fns F for Y2 in terms of X1,Y1,X2. Let
ϕ1 = ϕ[Y2 7→ F ].
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2. Substitute Skolem
function.

• E.g., if Ψ= ∀X1∃Y1∀X2∃Y2ϕ, consider 2-QBF formula
Ψ′ = ∀X1∀Y1∀X2∃Y2ϕ

• Synthesize Skolem fns F for Y2 in terms of X1,Y1,X2. Let
ϕ1 = ϕ[Y2 7→ F ].

• Observe: Ψ≡ ∀X1∃Y1∀X2ϕ1
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• Synthesize Skolem fns G for X2, let ϕ2 = ¬ϕ1[X2 7→ G].

• Then: Ψ≡ ∃X1∀Y1ϕ2 ≡ ∀X1∃Y1¬ϕ2 which is in 2-QBF

2. QBF to Dep-QBF by exploiting dependencies!

Every QBF formula is equivalent to a (2-)dep-QBF formula!
E.g., ∀X1∃Y1∀X2∃Y2∀X3∃Y3ϕ≡ ∀X1∀X2∀X3∃{x1}Y1∃{x1,y1,x2}Y2∃{x1,y1,x2,y2,x3}Y3.
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Experimental Evaluations

• 609 Benchmarks from:
– QBFEval competition (http://www.qbflib.org/)
– Arithmetic functions (Tabajara, Vardi,’2017)
– Disjunctive decomposition (Akshay et al. ’2017)
– Factorization(Akshay et al. ’2017)

• Compared among different state-of-the-art tools:
– CADET ( Rabe et al.’2019)
– C2Syn (Chakraborty et al.’ 2019)
– BFSS (Akshay et al. ’2018)
– Manthan (Golia et al.’ ’2020,’2021).

• Timeout: 7200 seconds.
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Experimental Evaluations: SOTA’21
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